📄 filtfilt.m
字号:
function y = filtfilt(b,a,x)%FILTFILT Zero-phase forward and reverse digital filtering.% Y = FILTFILT(B, A, X) filters the data in vector X with the filter described% by vectors A and B to create the filtered data Y. The filter is described % by the difference equation:%% y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)% - a(2)*y(n-1) - ... - a(na+1)*y(n-na)%%% After filtering in the forward direction, the filtered sequence is then % reversed and run back through the filter; Y is the time reverse of the % output of the second filtering operation. The result has precisely zero % phase distortion and magnitude modified by the square of the filter's % magnitude response. Care is taken to minimize startup and ending % transients by matching initial conditions.%% The length of the input x must be more than three times% the filter order, defined as max(length(b)-1,length(a)-1).%% Note that FILTFILT should not be used with differentiator and Hilbert FIR% filters, since the operation of these filters depends heavily on their% phase response.%% See also FILTER.% Author(s): L. Shure, 5-17-88% revised by T. Krauss, 1-21-94% initial conditions: Fredrik Gustafsson error(nargchk(3,3,nargin)) if (isempty(b)|isempty(a)|isempty(x)) y = []; return end [m,n] = size(x); if (n>1)&(m>1) y = x; for i=1:n % loop over columns y(:,i) = filtfilt(b,a,x(:,i)); end return % error('Only works for vector input.') end if m==1 x = x(:); % convert row to column end len = size(x,1); % length of input b = b(:).'; a = a(:).'; nb = length(b); na = length(a); nfilt = max(nb,na); nfact = 3*(nfilt-1); % length of edge transients if (len<=nfact), % input data too short! error('Data must have length more than 3 times filter order.'); end% set up filter's initial conditions to remove dc offset problems at the % beginning and end of the sequence if nb < nfilt, b(nfilt)=0; end % zero-pad if necessary if na < nfilt, a(nfilt)=0; end% use sparse matrix to solve system of linear equations for initial conditions% zi are the steady-state states of the filter b(z)/a(z) in the state-space % implementation of the 'filter' command. rows = [1:nfilt-1 2:nfilt-1 1:nfilt-2]; cols = [ones(1,nfilt-1) 2:nfilt-1 2:nfilt-1]; data = [1+a(2) a(3:nfilt) ones(1,nfilt-2) -ones(1,nfilt-2)]; sp = sparse(rows,cols,data); zi = sp \ ( b(2:nfilt).' - a(2:nfilt).'*b(1) );% non-sparse:% zi = ( eye(nfilt-1) - [-a(2:nfilt).' [eye(nfilt-2); zeros(1,nfilt-2)]] ) \ ...% ( b(2:nfilt).' - a(2:nfilt).'*b(1) );% Extrapolate beginning and end of data sequence using a "reflection% method". Slopes of original and extrapolated sequences match at% the end points.% This reduces end effects. y = [2*x(1)-x((nfact+1):-1:2);x;2*x(len)-x((len-1):-1:len-nfact)];% filter, reverse data, filter again, and reverse data again y = filter(b,a,y,[zi*y(1)]); y = y(length(y):-1:1); y = filter(b,a,y,[zi*y(1)]); y = y(length(y):-1:1);% remove extrapolated pieces of y y([1:nfact len+nfact+(1:nfact)]) = []; if m == 1 y = y.'; % convert back to row if necessary end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -