📄 quick_pso_svm.m
字号:
clc
clear
close all
tic
%---------------------------------------------------
load cancer_input;
load cancer_output;
%num = 0; %%控制迭代次数
num_svm = 0; %%计算支持向量总数
%%---------------------------------------------------
%%将训练样本分成2的整数倍份。
%%前一份作为训练样本,后一分作为训练样本,分别进行PSO优化
%%找出支持向量
%for n = 1:13
%while num < 12 & Percent < 0.9
%num = num+1;
max_iterations = 20;
no_of_particles = 20;
dimensions = 2;
%delta_min = -0.003;
%delta_max = 0.003;
c1 = 1.3;
c2 = 1.3;
%---------------------------------------------------
% 产生总体测试样本
TestX = cancer_input(301:367,:)
for i = 1:67
TestY(i) = cancer_output(300+i) - 3;
end
%---------------------------------------------------
%initialise the particles and teir velocity components
for count_x = 1:no_of_particles
for count_y = 1:dimensions
particle_position(count_x,count_y) = rand*10;
particle_velocity(count_x,count_y) = rand*1000;
p_best(count_x,count_y) = particle_position(count_x,count_y);
end
end
%initialize the p_best_fitness array
for count = 1:no_of_particles
p_best_fitness(count) = -1000;
end
for n = 1:30
%particle_position
%particle_velocity
count = 1;
Percent = 0;
%main particle swrm routine
while count < max_iterations & Percent < 0.99
%for count = 1:max_iterations
%find the fitness of each particle
%change fitness function as per equation requiresd and dimensions
for count_x = 1:no_of_particles
x = particle_position(count_x,1);
y = particle_position(count_x,2);
%---------------------------------------------------
% 产生训练样本与测试样本
% 特别注意:此工具箱用于分类时,只能处理2类分类,且目标值必须为 1 或 -1。
%n1 = [rand(3,5),rand(3,5)+1];
%x1 = [1*ones(1,5),-1*ones(1,5)];
%%产生接龙式样本
if n <= 30
for i = 1:10
for j = 1:9
n1(j,i) = cancer_input(n*20+i,j);
end
end
for i = 1:10
x1(i) = cancer_output(n*20+i)-3;
end
%n2 = [rand(3,5),rand(3,5)+1];
%x2 = [1*ones(1,5),-1*ones(1,5)];
for i = 1:67
for j = 1:9
%n2(j,i) = cancer_input((n+1)*20+i,j);
n2(j,i) = cancer_input(300+i,j);
end
end
for i = 1:67
%x2(i) = cancer_output((n+1)*20+i)-3;
x2(i) = cancer_output(300+i)-3;
end
else
for i = 1:10
for j = 1:9
n1(j,i) = cancer_input(n*10+i,j);
end
end
for i = 1:10
x1(i) = cancer_output(n*10+i)-3;
end
%n2 = [rand(3,5),rand(3,5)+1];
%x2 = [1*ones(1,5),-1*ones(1,5)];
for i = 1:10
for j = 1:9
%n2(j,i) = cancer_input(i,j);
n2(j,i) = cancer_input(300+i,j);
end
end
for i = 1:10
%x2(i) = cancer_output(i)-3;
x2(i) = cancer_output(300+i)-3;
end
end
xn_train = n1; % 训练样本,每一列为一个样本
dn_train = x1; % 训练目标,行向量
xn_test = n2; % 测试样本,每一列为一个样本
dn_test = x2; % 测试目标,行向量
%---------------------------------------------------
% 参数设置
trnX = xn_train';
trnY = dn_train';
tstX = xn_test';
tstY = dn_test';
ker = 'rbf'; % 核函数 k = exp(-(u-v)*(u-v)'/(2*p1^2))
global p1 ;
p1 = x; % p1 is width of rbfs (sigma)
C = y; % 折衷系数
%---------------------------------------------------
% 训练与测试
[nsv,alpha,bias] = svc(trnX,trnY,ker,C); % 训练
actfunc = 0; % 1 为实际输出,0 为取sign输出
predictedY = svcoutput(trnX,trnY,tstX,ker,alpha,bias,actfunc); % 测试
%---------------------------------------------------
% 结果统计
Result = ~abs(predictedY-tstY) % 正确分类显示为1
Percent = sum(Result)/length(Result) % 正确分类率
soln = 1-Percent
%x = particle_position(count_x,1);
%y = particle_position(count_x,2);
%z = particle_position(count_x,3);
%soln = x^2 - 3*y*x + z;
%x = particle_position(count_x);
%soln = x^2-2*x+1;
% x = particle_position(count_x);
% soln = x-7;
if soln~=0
current_fitness(count_x) = 1/abs(soln)+0.0001;
else
current_fitness(count_x) =1000;
end
end
%decide on p_best etc for each particle
for count_x = 1:no_of_particles
if current_fitness(count_x) > p_best_fitness(count_x)
p_best_fitness(count_x) = current_fitness(count_x);
for count_y = 1:dimensions
p_best(count_x,count_y) = particle_position(count_x,count_y);
end
end
end
%decide on the global best among all the particles
[g_best_val,g_best_index] = max(current_fitness);
%g_best contains the position of teh global best
for count_y = 1:dimensions
g_best(count_y) = particle_position(g_best_index,count_y);
end
%update the position and velocity compponents
for count_x = 1:no_of_particles
for count_y = 1:dimensions
p_current(count_y) = particle_position(count_x,count_y);
end
for count_y = 1:dimensions
particle_velocity(count_y) = particle_velocity(count_y) + c1*rand*(p_best(count_y)-p_current(count_y)) + c2*rand*(g_best(count_y)-p_current(count_y));
particle_positon(count_x,count_y) = p_current(count_y) +particle_velocity(count_y);
end
end
count = count + 1;
end
%%------------------------------------------------------
%%计算支持向量
p1 = g_best(1); % p1 is width of rbfs (sigma)
C = g_best(2); % 折衷系数
[nsv,alpha,bias] = svc(trnX,trnY,ker,C); % 训练
actfunc = 0; % 1 为实际输出,0 为取sign输出
PredictedY(:,n) = svcoutput(trnX,trnY,TestX,ker,alpha,bias,actfunc); % 测试
Result = ~abs(PredictedY(:,n)-tstY) % 正确分类显示为1
PercentY(n) = sum(Result)/length(Result) % 正确分类率
for i = 1:20
% afa(n,i) = alpha(i);
% b0(n) = bias;
if alpha(i)<0.0001
num_svm = num_svm + 1;
% afa(n,i) = 0;
for j = 1:9
sv_in(j,num_svm) = cancer_input(n*20+i,j);
end
sv_out(num_svm) = cancer_output(n*20+i)-3;
end
end
for i = 2
best(n,i) = g_best(i);
end
end
%------------------------
%加权输出
p_max = max(PercentY);
p_min = min(PercentY);
for i = 1:67
predicted_Y(i) = 0;
end
for i = 1:30
P(i) = (PercentY(i)-p_min)/(p_max-p_min);
PredictedY(:,i) = PredictedY(:,i)*P(i) ;
end
for i = 1:67
predicted_Y(i) = predicted_Y(i)+PredictedY(:,i);
end
predicted_Y = sign(predicted_Y);
Result = ~abs(predicted_Y-TestY) % 正确分类显示为1
Percent = sum(Result)/length(Result) % 正确分类率
t=toc;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -