⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 repeatedhillclimber.java

📁 数据挖掘中聚类的算法
💻 JAVA
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * RepeatedHillClimber.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand *  */ package weka.classifiers.bayes.net.search.global;import weka.classifiers.bayes.BayesNet;import weka.classifiers.bayes.net.ParentSet;import weka.core.Instances;import weka.core.Option;import weka.core.Utils;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/**  <!-- globalinfo-start --> * This Bayes Network learning algorithm repeatedly uses hill climbing starting with a randomly generated network structure and return the best structure of the various runs. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -U &lt;integer&gt; *  Number of runs</pre> *  * <pre> -A &lt;seed&gt; *  Random number seed</pre> *  * <pre> -P &lt;nr of parents&gt; *  Maximum number of parents</pre> *  * <pre> -R *  Use arc reversal operation. *  (default false)</pre> *  * <pre> -N *  Initial structure is empty (instead of Naive Bayes)</pre> *  * <pre> -mbc *  Applies a Markov Blanket correction to the network structure,  *  after a network structure is learned. This ensures that all  *  nodes in the network are part of the Markov blanket of the  *  classifier node.</pre> *  * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> *  * <pre> -Q *  Use probabilistic or 0/1 scoring. *  (default probabilistic scoring)</pre> *  <!-- options-end --> *  * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 1.5 $ */public class RepeatedHillClimber     extends HillClimber {    /** for serialization */    static final long serialVersionUID = -7359197180460703069L;      /** number of runs **/    int m_nRuns = 10;    /** random number seed **/    int m_nSeed = 1;    /** random number generator **/    Random m_random;	/**	* search determines the network structure/graph of the network	* with the repeated hill climbing.	* 	* @param bayesNet the network to use	* @param instances the data to use	* @throws Exception if something goes wrong	**/	protected void search(BayesNet bayesNet, Instances instances) throws Exception {		m_random = new Random(getSeed());		// keeps track of score pf best structure found so far 		double fBestScore;			double fCurrentScore = calcScore(bayesNet);		// keeps track of best structure found so far 		BayesNet bestBayesNet;		// initialize bestBayesNet		fBestScore = fCurrentScore;		bestBayesNet = new BayesNet();		bestBayesNet.m_Instances = instances;		bestBayesNet.initStructure();		copyParentSets(bestBayesNet, bayesNet);		                        // go do the search                for (int iRun = 0; iRun < m_nRuns; iRun++) {        	// generate random nework        	generateRandomNet(bayesNet, instances);        	// search        	super.search(bayesNet, instances);			// calculate score			fCurrentScore = calcScore(bayesNet);			// keep track of best network seen so far			if (fCurrentScore > fBestScore) {				fBestScore = fCurrentScore;				copyParentSets(bestBayesNet, bayesNet);			}        }                // restore current network to best network		copyParentSets(bayesNet, bestBayesNet);				// free up memory		bestBayesNet = null;    } // search	/**	 * 	 * @param bayesNet	 * @param instances	 */	void generateRandomNet(BayesNet bayesNet, Instances instances) {		int nNodes = instances.numAttributes();		// clear network		for (int iNode = 0; iNode < nNodes; iNode++) {			ParentSet parentSet = bayesNet.getParentSet(iNode);			while (parentSet.getNrOfParents() > 0) {				parentSet.deleteLastParent(instances);			}		}				// initialize as naive Bayes?		if (getInitAsNaiveBayes()) {			int iClass = instances.classIndex();			// initialize parent sets to have arrow from classifier node to			// each of the other nodes			for (int iNode = 0; iNode < nNodes; iNode++) {				if (iNode != iClass) {					bayesNet.getParentSet(iNode).addParent(iClass, instances);				}			}		}		// insert random arcs		int nNrOfAttempts = m_random.nextInt(nNodes * nNodes);		for (int iAttempt = 0; iAttempt < nNrOfAttempts; iAttempt++) {			int iTail = m_random.nextInt(nNodes);			int iHead = m_random.nextInt(nNodes);			if (bayesNet.getParentSet(iHead).getNrOfParents() < getMaxNrOfParents() &&			    addArcMakesSense(bayesNet, instances, iHead, iTail)) {					bayesNet.getParentSet(iHead).addParent(iTail, instances);			}		}	} // generateRandomNet	/** 	 * copyParentSets copies parent sets of source to dest BayesNet	 * 	 * @param dest destination network	 * @param source source network	 */	void copyParentSets(BayesNet dest, BayesNet source) {		int nNodes = source.getNrOfNodes();		// clear parent set first		for (int iNode = 0; iNode < nNodes; iNode++) {			dest.getParentSet(iNode).copy(source.getParentSet(iNode));		}			} // CopyParentSets    /**     * Returns the number of runs     *      * @return number of runs     */    public int getRuns() {        return m_nRuns;    } // getRuns    /**     * Sets the number of runs     *      * @param nRuns The number of runs to set     */    public void setRuns(int nRuns) {        m_nRuns = nRuns;    } // setRuns	/**	 * Returns the random seed	 * 	 * @return random number seed	 */	public int getSeed() {		return m_nSeed;	} // getSeed	/**	 * Sets the random number seed	 * 	 * @param nSeed The number of the seed to set	 */	public void setSeed(int nSeed) {		m_nSeed = nSeed;	} // setSeed	/**	 * Returns an enumeration describing the available options.	 *	 * @return an enumeration of all the available options.	 */	public Enumeration listOptions() {		Vector newVector = new Vector(4);		newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>"));		newVector.addElement(new Option("\tRandom number seed", "A", 1, "-A <seed>"));		Enumeration enu = super.listOptions();		while (enu.hasMoreElements()) {			newVector.addElement(enu.nextElement());		}		return newVector.elements();	} // listOptions	/**	 * Parses a given list of options. <p/>	 *	 <!-- options-start -->	 * Valid options are: <p/>	 * 	 * <pre> -U &lt;integer&gt;	 *  Number of runs</pre>	 * 	 * <pre> -A &lt;seed&gt;	 *  Random number seed</pre>	 * 	 * <pre> -P &lt;nr of parents&gt;	 *  Maximum number of parents</pre>	 * 	 * <pre> -R	 *  Use arc reversal operation.	 *  (default false)</pre>	 * 	 * <pre> -N	 *  Initial structure is empty (instead of Naive Bayes)</pre>	 * 	 * <pre> -mbc	 *  Applies a Markov Blanket correction to the network structure, 	 *  after a network structure is learned. This ensures that all 	 *  nodes in the network are part of the Markov blanket of the 	 *  classifier node.</pre>	 * 	 * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV]	 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre>	 * 	 * <pre> -Q	 *  Use probabilistic or 0/1 scoring.	 *  (default probabilistic scoring)</pre>	 * 	 <!-- options-end -->	 *	 * @param options the list of options as an array of strings	 * @throws Exception if an option is not supported	 */	public void setOptions(String[] options) throws Exception {		String sRuns = Utils.getOption('U', options);		if (sRuns.length() != 0) {			setRuns(Integer.parseInt(sRuns));		}				String sSeed = Utils.getOption('A', options);		if (sSeed.length() != 0) {			setSeed(Integer.parseInt(sSeed));		}		super.setOptions(options);	} // setOptions	/**	 * Gets the current settings of the search algorithm.	 *	 * @return an array of strings suitable for passing to setOptions	 */	public String[] getOptions() {		String[] superOptions = super.getOptions();		String[] options = new String[7 + superOptions.length];		int current = 0;		options[current++] = "-U";		options[current++] = "" + getRuns();		options[current++] = "-A";		options[current++] = "" + getSeed();		// insert options from parent class		for (int iOption = 0; iOption < superOptions.length; iOption++) {			options[current++] = superOptions[iOption];		}		// Fill up rest with empty strings, not nulls!		while (current < options.length) {			options[current++] = "";		}		return options;	} // getOptions	/**	 * This will return a string describing the classifier.	 * 	 * @return The string.	 */	public String globalInfo() {		return "This Bayes Network learning algorithm repeatedly uses hill climbing starting " +		"with a randomly generated network structure and return the best structure of the " +		"various runs.";	} // globalInfo		/**	 * @return a string to describe the Runs option.	 */	public String runsTipText() {	  return "Sets the number of times hill climbing is performed.";	} // runsTipText	/**	 * @return a string to describe the Seed option.	 */	public String seedTipText() {	  return "Initialization value for random number generator." +	  " Setting the seed allows replicability of experiments.";	} // seedTipText}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -