📄 lagdhillclimber.java
字号:
double bestDeltaScore = 0; double currentDeltaScore = 0; Operation [] bestOperation = new Operation [nrOfLookAheadSteps]; Operation [] goodOperations = new Operation [nrOfGoodOperations]; Operation [] tempOperation = new Operation [nrOfLookAheadSteps-1]; goodOperations = getGoodOperations(bayesNet, instances, nrOfGoodOperations); for (int i = 0; i < nrOfGoodOperations; i++) { if (goodOperations[i] != null) { performOperation(bayesNet, instances, goodOperations [i]); tempOperation = getOptimalOperations(bayesNet, instances, nrOfLookAheadSteps-1, nrOfGoodOperations); // rekursiver Abstieg currentDeltaScore = goodOperations [i].m_fDeltaScore; for (int j = 0; j < nrOfLookAheadSteps-1; j++) { if (tempOperation [j] != null) { currentDeltaScore += tempOperation [j].m_fDeltaScore; } } performOperation(bayesNet, instances, getAntiOperation(goodOperations [i])); if (currentDeltaScore > bestDeltaScore) { bestDeltaScore = currentDeltaScore; bestOperation [0] = goodOperations [i]; for (int j = 1; j < nrOfLookAheadSteps; j++) { bestOperation [j] = tempOperation [j-1]; } } } else i=nrOfGoodOperations; } return(bestOperation); } } // getOptimalOperations /** * Sets the max number of parents * * @param nMaxNrOfParents the max number of parents */ public void setMaxNrOfParents(int nMaxNrOfParents) { m_nMaxNrOfParents = nMaxNrOfParents; } /** * Gets the max number of parents. * * @return the max number of parents */ public int getMaxNrOfParents() { return m_nMaxNrOfParents; } /** * Sets the number of look-ahead steps * * @param nNrOfLookAheadSteps the number of look-ahead steps */ public void setNrOfLookAheadSteps(int nNrOfLookAheadSteps) { m_nNrOfLookAheadSteps = nNrOfLookAheadSteps; } /** * Gets the number of look-ahead steps * * @return the number of look-ahead step */ public int getNrOfLookAheadSteps() { return m_nNrOfLookAheadSteps; } /** * Sets the number of "good operations" * * @param nNrOfGoodOperations the number of "good operations" */ public void setNrOfGoodOperations(int nNrOfGoodOperations) { m_nNrOfGoodOperations = nNrOfGoodOperations; } /** * Gets the number of "good operations" * * @return the number of "good operations" */ public int getNrOfGoodOperations() { return m_nNrOfGoodOperations; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option("\tLook Ahead Depth", "L", 2, "-L <nr of look ahead steps>")); newVector.addElement(new Option("\tNr of Good Operations", "G", 5, "-G <nr of good operations>")); Enumeration enm = super.listOptions(); while (enm.hasMoreElements()) { newVector.addElement(enm.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options. Valid options are:<p> * <!-- options-start --> * Valid options are: <p/> * * <pre> -L <nr of look ahead steps> * Look Ahead Depth</pre> * * <pre> -G <nr of good operations> * Nr of Good Operations</pre> * * <pre> -P <nr of parents> * Maximum number of parents</pre> * * <pre> -R * Use arc reversal operation. * (default false)</pre> * * <pre> -N * Initial structure is empty (instead of Naive Bayes)</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sNrOfLookAheadSteps = Utils.getOption('L', options); if (sNrOfLookAheadSteps.length() != 0) { setNrOfLookAheadSteps(Integer.parseInt(sNrOfLookAheadSteps)); } else { setNrOfLookAheadSteps(2); } String sNrOfGoodOperations = Utils.getOption('G', options); if (sNrOfGoodOperations.length() != 0) { setNrOfGoodOperations(Integer.parseInt(sNrOfGoodOperations)); } else { setNrOfGoodOperations(5); } super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[9 + superOptions.length]; int current = 0; options[current++] = "-L"; options[current++] = "" + m_nNrOfLookAheadSteps; options[current++] = "-G"; options[current++] = "" + m_nNrOfGoodOperations; // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * This will return a string describing the search algorithm. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses a Look Ahead Hill Climbing algorithm called LAGD Hill Climbing." + " Unlike Greedy Hill Climbing it doesn't calculate a best greedy operation (adding, deleting or reversing an arc) " + "but a sequence of nrOfLookAheadSteps operations, which leads to a network structure whose score is most likely " + "higher in comparison to the network obtained by performing a sequence of nrOfLookAheadSteps greedy operations. " + "The search is not restricted by an order " + "on the variables (unlike K2). The difference with B and B2 is that this hill " + "climber also considers arrows part of the naive Bayes structure for deletion."; } // globalInfo /** * @return a string to describe the Number of Look Ahead Steps option. */ public String nrOfLookAheadStepsTipText() { return "Sets the Number of Look Ahead Steps. 'nrOfLookAheadSteps = 2' means that all network structures in a " + "distance of 2 (from the current network structure) are taken into account for the decision which arcs to add, " + "remove or reverse. 'nrOfLookAheadSteps = 1' results in Greedy Hill Climbing." ; } // nrOfLookAheadStepsTipText /** * @return a string to describe the Number of Good Operations option. */ public String nrOfGoodOperationsTipText() { return "Sets the Number of Good Operations per Look Ahead Step. 'nrOfGoodOperations = 5' means that for the next " + "Look Ahead Step only the 5 best Operations (adding, deleting or reversing an arc) are taken into account for the " + "calculation of the best sequence consisting of nrOfLookAheadSteps operations." ; } // nrOfGoodOperationsTipText} // LAGDHillClimber
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -