⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lagdhillclimber.java

📁 数据挖掘中聚类的算法
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * LAGDHillClimber.java * Copyright (C) 2005 Manuel Neubach *  */package weka.classifiers.bayes.net.search.local;import weka.classifiers.bayes.BayesNet;import weka.core.Instances;import weka.core.Option;import weka.core.Utils;import java.util.Enumeration;import java.util.Vector;/**  <!-- globalinfo-start --> * This Bayes Network learning algorithm uses a Look Ahead Hill Climbing algorithm called LAGD Hill Climbing. Unlike Greedy Hill Climbing it doesn't calculate a best greedy operation (adding, deleting or reversing an arc) but a sequence of nrOfLookAheadSteps operations, which leads to a network structure whose score is most likely higher in comparison to the network obtained by performing a sequence of nrOfLookAheadSteps greedy operations. The search is not restricted by an order on the variables (unlike K2). The difference with B and B2 is that this hill climber also considers arrows part of the naive Bayes structure for deletion. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -L &lt;nr of look ahead steps&gt; *  Look Ahead Depth</pre> *  * <pre> -G &lt;nr of good operations&gt; *  Nr of Good Operations</pre> *  * <pre> -P &lt;nr of parents&gt; *  Maximum number of parents</pre> *  * <pre> -R *  Use arc reversal operation. *  (default false)</pre> *  * <pre> -N *  Initial structure is empty (instead of Naive Bayes)</pre> *  * <pre> -mbc *  Applies a Markov Blanket correction to the network structure,  *  after a network structure is learned. This ensures that all  *  nodes in the network are part of the Markov blanket of the  *  classifier node.</pre> *  * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> *  <!-- options-end --> *  * @author Manuel Neubach * @version $Revision: 1.6 $ */public class LAGDHillClimber     extends HillClimber {      /** for serialization */    static final long serialVersionUID = 7217437499439184344L;    /** Number of Look Ahead Steps **/    int m_nNrOfLookAheadSteps = 2;    /** Number of Good Operations per Step **/    int m_nNrOfGoodOperations = 5;   /**     * search determines the network structure/graph of the network     *      * @param bayesNet the network     * @param instances the data to use     * @throws Exception if something goes wrong     */   protected void search(BayesNet bayesNet, Instances instances) throws Exception {        int k=m_nNrOfLookAheadSteps;  // Number of Look Ahead Steps        int l=m_nNrOfGoodOperations; // Number of Good Operations per step        lookAheadInGoodDirectionsSearch(bayesNet, instances, k, l);   } // search   /**    * lookAheadInGoodDirectionsSearch determines the network structure/graph of the network    * with best score according to LAGD Hill Climbing    *     * @param bayesNet the network    * @param instances the data to use    * @param nrOfLookAheadSteps    * @param nrOfGoodOperations    * @throws Exception if something goes wrong    */    protected void lookAheadInGoodDirectionsSearch(BayesNet bayesNet, Instances instances, int nrOfLookAheadSteps, int nrOfGoodOperations) throws Exception {         System.out.println("Initializing Cache");         initCache(bayesNet, instances);         while (nrOfLookAheadSteps>1) {                     System.out.println("Look Ahead Depth: "+nrOfLookAheadSteps);            boolean legalSequence = true;            double sequenceDeltaScore = 0;            Operation [] bestOperation=new Operation [nrOfLookAheadSteps];                     bestOperation = getOptimalOperations(bayesNet, instances, nrOfLookAheadSteps, nrOfGoodOperations);            for (int i = 0; i < nrOfLookAheadSteps; i++) {               if (bestOperation [i] == null) {                  legalSequence=false;               } else {                  sequenceDeltaScore += bestOperation [i].m_fDeltaScore;               }            }            while (legalSequence && sequenceDeltaScore > 0) {               System.out.println("Next Iteration..........................");               for (int i = 0; i < nrOfLookAheadSteps; i++) {                  performOperation(bayesNet, instances,bestOperation [i]);               }               bestOperation = getOptimalOperations(bayesNet, instances, nrOfLookAheadSteps, nrOfGoodOperations);               sequenceDeltaScore = 0;               for (int i = 0; i < nrOfLookAheadSteps; i++) {                  if (bestOperation [i] != null) {                     System.out.println(bestOperation [i].m_nOperation + " " + bestOperation [i].m_nHead + " " + bestOperation [i].m_nTail);                     sequenceDeltaScore += bestOperation [i].m_fDeltaScore;                  } else {                     legalSequence = false;                  }                  System.out.println("DeltaScore: "+sequenceDeltaScore);               }            }            --nrOfLookAheadSteps;         }         /** last steps with greedy HC **/                   Operation oOperation = getOptimalOperation(bayesNet, instances);         while ((oOperation != null) && (oOperation.m_fDeltaScore > 0)) {	    performOperation(bayesNet, instances, oOperation);            System.out.println("Performing last greedy steps");            oOperation = getOptimalOperation(bayesNet, instances);         }               	 // free up memory	 m_Cache = null;    } // lookAheadInGoodDirectionsSearch    /**      * getAntiOperation determines the Operation, which is needed to cancel oOperation      *       * @param oOperation Operation to cancel      * @return antiOperation to oOperation      * @throws Exception if something goes wrong      */    protected Operation getAntiOperation(Operation oOperation) throws Exception {        if (oOperation.m_nOperation == Operation.OPERATION_ADD)           return (new Operation (oOperation.m_nTail, oOperation.m_nHead, Operation.OPERATION_DEL));        else {           if (oOperation.m_nOperation == Operation.OPERATION_DEL)              return (new Operation (oOperation.m_nTail, oOperation.m_nHead, Operation.OPERATION_ADD));           else {              return (new Operation (oOperation.m_nHead, oOperation.m_nTail, Operation.OPERATION_REVERSE));           }         }    } // getAntiOperation    /**      * getGoodOperations determines the nrOfGoodOperations best Operations, which are considered for      * the calculation of an optimal operationsequence      * @param bayesNet Bayes network to apply operation on      * @param instances data set to learn from      * @param nrOfGoodOperations number of good operations to consider      * @return good operations to consider      * @throws Exception if something goes wrong      **/    protected Operation [] getGoodOperations(BayesNet bayesNet, Instances instances, int nrOfGoodOperations) throws Exception {		Operation [] goodOperations=new Operation [nrOfGoodOperations];       		for (int i = 0; i < nrOfGoodOperations; i++) {                   goodOperations [i] = getOptimalOperation(bayesNet, instances);                   if (goodOperations[i] != null) {                      m_Cache.put(goodOperations [i], -1E100);                   } else i=nrOfGoodOperations;                }                for (int i = 0; i < nrOfGoodOperations; i++) {                   if (goodOperations[i] != null) {                      if (goodOperations [i].m_nOperation!=Operation.OPERATION_REVERSE) {                         m_Cache.put(goodOperations [i], goodOperations [i].m_fDeltaScore);                      } else {                         m_Cache.put(goodOperations [i], goodOperations [i].m_fDeltaScore - m_Cache.m_fDeltaScoreAdd[goodOperations[i].m_nHead] [goodOperations [i].m_nTail]);                      }                   } else i=nrOfGoodOperations;                }                return goodOperations;    } // getGoodOperations    /**      * getOptimalOperations determines an optimal operationsequence in respect of the parameters       * nrOfLookAheadSteps and nrOfGoodOperations      * @param bayesNet Bayes network to apply operation on      * @param instances data set to learn from      * @param nrOfLookAheadSteps number of lood ahead steps to use      * @param nrOfGoodOperations number of good operations to consider      * @return optimal sequence of operations in respect to nrOfLookAheadSteps and nrOfGoodOperations      * @throws Exception if something goes wrong      **/    protected Operation [] getOptimalOperations(BayesNet bayesNet, Instances instances, int nrOfLookAheadSteps, int nrOfGoodOperations) throws Exception {       if (nrOfLookAheadSteps == 1) { // Abbruch der Rekursion          Operation [] bestOperation = new Operation [1];          bestOperation [0] = getOptimalOperation(bayesNet, instances);          return(bestOperation);  // Abbruch der Rekursion       } else {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -