⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bayesnetestimator.java

📁 数据挖掘中聚类的算法
💻 JAVA
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * BayesNetEstimator.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand *  */package weka.classifiers.bayes.net.estimate;import weka.classifiers.bayes.BayesNet;import weka.core.Instance;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import java.io.Serializable;import java.util.Enumeration;import java.util.Vector;/**  <!-- globalinfo-start --> * BayesNetEstimator is the base class for estimating the conditional probability tables of a Bayes network once the structure has been learned. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -A &lt;alpha&gt; *  Initial count (alpha) * </pre> *  <!-- options-end --> *  * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 1.3 $ */public class BayesNetEstimator     implements OptionHandler, Serializable {      /** for serialization */    static final long serialVersionUID = 2184330197666253884L;        /**     * Holds prior on count     */    protected double m_fAlpha = 0.5;    /**     * estimateCPTs estimates the conditional probability tables for the Bayes     * Net using the network structure.     *      * @param bayesNet the bayes net to use     * @throws Exception always throws an exception, since subclass needs to be used     */    public void estimateCPTs(BayesNet bayesNet) throws Exception {        throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");    }    /**     * Updates the classifier with the given instance.     *      * @param bayesNet the bayes net to use     * @param instance the new training instance to include in the model     * @throws Exception always throws an exception, since subclass needs to be used     */    public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception {        throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");    }    /**     * Calculates the class membership probabilities for the given test     * instance.     *      * @param bayesNet the bayes net to use     * @param instance the instance to be classified     * @return predicted class probability distribution     * @throws Exception always throws an exception, since subclass needs to be used     */    public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception {        throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");    }    /**      * initCPTs reserves space for CPTs and set all counts to zero     *      * @param bayesNet the bayes net to use     * @throws Exception always throws an exception, since subclass needs to be used     */    public void initCPTs(BayesNet bayesNet) throws Exception {        throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");    } // initCPTs    /**     * Returns an enumeration describing the available options     *      * @return an enumeration of all the available options     */    public Enumeration listOptions() {        Vector newVector = new Vector(1);        newVector.addElement(new Option("\tInitial count (alpha)\n", "A", 1, "-A <alpha>"));        return newVector.elements();    } // listOptions    /**     * Parses a given list of options. <p/>     *     <!-- options-start -->     * Valid options are: <p/>     *      * <pre> -A &lt;alpha&gt;     *  Initial count (alpha)     * </pre>     *      <!-- options-end -->     *      * @param options the list of options as an array of strings     * @throws Exception if an option is not supported     */    public void setOptions(String[] options) throws Exception {        String sAlpha = Utils.getOption('A', options);        if (sAlpha.length() != 0) {            m_fAlpha = (new Float(sAlpha)).floatValue();        } else {            m_fAlpha = 0.5f;        }        Utils.checkForRemainingOptions(options);    } // setOptions    /**     * Gets the current settings of the classifier.     *      * @return an array of strings suitable for passing to setOptions     */    public String[] getOptions() {        String[] options = new String[2];        int current = 0;        options[current++] = "-A";        options[current++] = "" + m_fAlpha;        return options;    } // getOptions    /**     * Set prior used in probability table estimation     * @param fAlpha representing prior     */    public void setAlpha(double fAlpha) {        m_fAlpha = fAlpha;    }    /**     * Get prior used in probability table estimation     * @return prior     */    public double getAlpha() {        return m_fAlpha;    }    /**     * @return a string to describe the Alpha option.     */    public String alphaTipText() {        return "Alpha is used for estimating the probability tables and can be interpreted"            + " as the initial count on each value.";    }    /**     * This will return a string describing the class.     * @return The string.     */    public String globalInfo() {        return             "BayesNetEstimator is the base class for estimating the "          + "conditional probability tables of a Bayes network once the "          + "structure has been learned.";    }} // BayesNetEstimator

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -