📄 dbscan.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Copyright (C) 2004 * & Matthias Schubert (schubert@dbs.ifi.lmu.de) * & Zhanna Melnikova-Albrecht (melnikov@cip.ifi.lmu.de) * & Rainer Holzmann (holzmann@cip.ifi.lmu.de) */package weka.clusterers;import weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject;import weka.clusterers.forOPTICSAndDBScan.Databases.Database;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.unsupervised.attribute.ReplaceMissingValues;import java.lang.reflect.Constructor;import java.lang.reflect.InvocationTargetException;import java.text.DecimalFormat;import java.util.Enumeration;import java.util.Iterator;import java.util.List;import java.util.Vector;/** <!-- globalinfo-start --> * Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Second International Conference on Knowledge Discovery and Data Mining, 226-231, 1996. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Ester1996, * author = {Martin Ester and Hans-Peter Kriegel and Joerg Sander and Xiaowei Xu}, * booktitle = {Second International Conference on Knowledge Discovery and Data Mining}, * editor = {Evangelos Simoudis and Jiawei Han and Usama M. Fayyad}, * pages = {226-231}, * publisher = {AAAI Press}, * title = {A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise}, * year = {1996} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -E <double> * epsilon (default = 0.9)</pre> * * <pre> -M <int> * minPoints (default = 6)</pre> * * <pre> -I <String> * index (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)</pre> * * <pre> -D <String> * distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)</pre> * <!-- options-end --> * * @author Matthias Schubert (schubert@dbs.ifi.lmu.de) * @author Zhanna Melnikova-Albrecht (melnikov@cip.ifi.lmu.de) * @author Rainer Holzmann (holzmann@cip.ifi.lmu.de) * @version $Revision: 1.7 $ */public class DBScan extends Clusterer implements OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -1666498248451219728L; /** * Specifies the radius for a range-query */ private double epsilon = 0.9; /** * Specifies the density (the range-query must contain at least minPoints DataObjects) */ private int minPoints = 6; /** * Replace missing values in training instances */ private ReplaceMissingValues replaceMissingValues_Filter; /** * Holds the number of clusters generated */ private int numberOfGeneratedClusters; /** * Holds the distance-type that is used * (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject) */ private String database_distanceType = "weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject"; /** * Holds the type of the used database * (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase) */ private String database_Type = "weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase"; /** * The database that is used for DBScan */ private Database database; /** * Holds the current clusterID */ private int clusterID; /** * Counter for the processed instances */ private int processed_InstanceID; /** * Holds the time-value (seconds) for the duration of the clustering-process */ private double elapsedTime; /** * Returns default capabilities of the clusterer. * * @return the capabilities of this clusterer */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } // ***************************************************************************************************************** // constructors // ***************************************************************************************************************** // ***************************************************************************************************************** // methods // ***************************************************************************************************************** /** * Generate Clustering via DBScan * @param instances The instances that need to be clustered * @throws java.lang.Exception If clustering was not successful */ public void buildClusterer(Instances instances) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(instances); long time_1 = System.currentTimeMillis(); processed_InstanceID = 0; numberOfGeneratedClusters = 0; clusterID = 0; replaceMissingValues_Filter = new ReplaceMissingValues(); replaceMissingValues_Filter.setInputFormat(instances); Instances filteredInstances = Filter.useFilter(instances, replaceMissingValues_Filter); database = databaseForName(getDatabase_Type(), filteredInstances); for (int i = 0; i < database.getInstances().numInstances(); i++) { DataObject dataObject = dataObjectForName(getDatabase_distanceType(), database.getInstances().instance(i), Integer.toString(i), database); database.insert(dataObject); } database.setMinMaxValues(); Iterator iterator = database.dataObjectIterator(); while (iterator.hasNext()) { DataObject dataObject = (DataObject) iterator.next(); if (dataObject.getClusterLabel() == DataObject.UNCLASSIFIED) { if (expandCluster(dataObject)) { clusterID++; numberOfGeneratedClusters++; } } } long time_2 = System.currentTimeMillis(); elapsedTime = (double) (time_2 - time_1) / 1000.0; } /** * Assigns this dataObject to a cluster or remains it as NOISE * @param dataObject The DataObject that needs to be assigned * @return true, if the DataObject could be assigned, else false */ private boolean expandCluster(DataObject dataObject) { List seedList = database.epsilonRangeQuery(getEpsilon(), dataObject); /** dataObject is NO coreObject */ if (seedList.size() < getMinPoints()) { dataObject.setClusterLabel(DataObject.NOISE); return false; } /** dataObject is coreObject */ for (int i = 0; i < seedList.size(); i++) { DataObject seedListDataObject = (DataObject) seedList.get(i); /** label this seedListDataObject with the current clusterID, because it is in epsilon-range */ seedListDataObject.setClusterLabel(clusterID); if (seedListDataObject.equals(dataObject)) { seedList.remove(i); i--; } } /** Iterate the seedList of the startDataObject */ for (int j = 0; j < seedList.size(); j++) { DataObject seedListDataObject = (DataObject) seedList.get(j); List seedListDataObject_Neighbourhood = database.epsilonRangeQuery(getEpsilon(), seedListDataObject); /** seedListDataObject is coreObject */ if (seedListDataObject_Neighbourhood.size() >= getMinPoints()) { for (int i = 0; i < seedListDataObject_Neighbourhood.size(); i++) { DataObject p = (DataObject) seedListDataObject_Neighbourhood.get(i); if (p.getClusterLabel() == DataObject.UNCLASSIFIED || p.getClusterLabel() == DataObject.NOISE) { if (p.getClusterLabel() == DataObject.UNCLASSIFIED) { seedList.add(p); } p.setClusterLabel(clusterID); } } } seedList.remove(j); j--; } return true; } /** * Classifies a given instance. * * @param instance The instance to be assigned to a cluster * @return int The number of the assigned cluster as an integer * @throws java.lang.Exception If instance could not be clustered * successfully */ public int clusterInstance(Instance instance) throws Exception { if (processed_InstanceID >= database.size()) processed_InstanceID = 0; int cnum = (database.getDataObject(Integer.toString(processed_InstanceID++))).getClusterLabel(); if (cnum == DataObject.NOISE) throw new Exception(); else return cnum; } /** * Returns the number of clusters. * * @return int The number of clusters generated for a training dataset. * @throws java.lang.Exception if number of clusters could not be returned * successfully */ public int numberOfClusters() throws Exception { return numberOfGeneratedClusters; } /** * Returns an enumeration of all the available options.. * * @return Enumeration An enumeration of all available options. */ public Enumeration listOptions() { Vector vector = new Vector(); vector.addElement( new Option("\tepsilon (default = 0.9)", "E", 1, "-E <double>")); vector.addElement( new Option("\tminPoints (default = 6)", "M", 1, "-M <int>")); vector.addElement( new Option("\tindex (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)", "I",
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -