📄 simplekmeans.java
字号:
} if (secondI == m_ClusterCentroids.classIndex()) { p2++; continue; } */ double diff; if (firstI == secondI) { diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { diff = difference(secondI, 0, second.valueSparse(p2)); p2++; } else { diff = difference(firstI, first.valueSparse(p1), 0); p1++; } distance += diff * diff; } //return Math.sqrt(distance / m_ClusterCentroids.numAttributes()); return distance; } /** * Computes the difference between two given attribute * values. * * @param index the attribute index * @param val1 the first value * @param val2 the second value * @return the difference */ private double difference(int index, double val1, double val2) { switch (m_ClusterCentroids.attribute(index).type()) { case Attribute.NOMINAL: // If attribute is nominal if (Instance.isMissingValue(val1) || Instance.isMissingValue(val2) || ((int)val1 != (int)val2)) { return 1; } else { return 0; } case Attribute.NUMERIC: // If attribute is numeric if (Instance.isMissingValue(val1) || Instance.isMissingValue(val2)) { if (Instance.isMissingValue(val1) && Instance.isMissingValue(val2)) { return 1; } else { double diff; if (Instance.isMissingValue(val2)) { diff = norm(val1, index); } else { diff = norm(val2, index); } if (diff < 0.5) { diff = 1.0 - diff; } return diff; } } else { return norm(val1, index) - norm(val2, index); } default: return 0; } } /** * Normalizes a given value of a numeric attribute. * * @param x the value to be normalized * @param i the attribute's index * @return the normalized value */ private double norm(double x, int i) { if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i],m_Min[i])) { return 0; } else { return (x - m_Min[i]) / (m_Max[i] - m_Min[i]); } } /** * Updates the minimum and maximum values for all the attributes * based on a new instance. * * @param instance the new instance */ private void updateMinMax(Instance instance) { for (int j = 0;j < m_ClusterCentroids.numAttributes(); j++) { if (!instance.isMissing(j)) { if (Double.isNaN(m_Min[j])) { m_Min[j] = instance.value(j); m_Max[j] = instance.value(j); } else { if (instance.value(j) < m_Min[j]) { m_Min[j] = instance.value(j); } else { if (instance.value(j) > m_Max[j]) { m_Max[j] = instance.value(j); } } } } } } /** * Returns the number of clusters. * * @return the number of clusters generated for a training dataset. * @throws Exception if number of clusters could not be returned * successfully */ public int numberOfClusters() throws Exception { return m_NumClusters; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions () { Vector result = new Vector(); result.addElement(new Option( "\tnumber of clusters.\n" + "\t(default 2).", "N", 1, "-N <num>")); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); return result.elements(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numClustersTipText() { return "set number of clusters"; } /** * set the number of clusters to generate * * @param n the number of clusters to generate * @throws Exception if number of clusters is negative */ public void setNumClusters(int n) throws Exception { if (n <= 0) { throw new Exception("Number of clusters must be > 0"); } m_NumClusters = n; } /** * gets the number of clusters to generate * * @return the number of clusters to generate */ public int getNumClusters() { return m_NumClusters; } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -N <num> * number of clusters. * (default 2).</pre> * * <pre> -S <num> * Random number seed. * (default 10)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { String optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); } super.setOptions(options); } /** * Gets the current settings of SimpleKMeans * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { int i; Vector result; String[] options; result = new Vector(); result.add("-N"); result.add("" + getNumClusters()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * return a string describing this clusterer * * @return a description of the clusterer as a string */ public String toString() { int maxWidth = 0; for (int i = 0; i < m_NumClusters; i++) { for (int j = 0 ;j < m_ClusterCentroids.numAttributes(); j++) { if (m_ClusterCentroids.attribute(j).isNumeric()) { double width = Math.log(Math.abs(m_ClusterCentroids.instance(i).value(j))) / Math.log(10.0); width += 1.0; if ((int)width > maxWidth) { maxWidth = (int)width; } } } } StringBuffer temp = new StringBuffer(); String naString = "N/A"; for (int i = 0; i < maxWidth+2; i++) { naString += " "; } temp.append("\nkMeans\n======\n"); temp.append("\nNumber of iterations: " + m_Iterations+"\n"); temp.append("Within cluster sum of squared errors: " + Utils.sum(m_squaredErrors)); temp.append("\n\nCluster centroids:\n"); for (int i = 0; i < m_NumClusters; i++) { temp.append("\nCluster "+i+"\n\t"); temp.append("Mean/Mode: "); for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) { if (m_ClusterCentroids.attribute(j).isNominal()) { temp.append(" "+m_ClusterCentroids.attribute(j). value((int)m_ClusterCentroids.instance(i).value(j))); } else { temp.append(" "+Utils.doubleToString(m_ClusterCentroids.instance(i).value(j), maxWidth+5, 4)); } } temp.append("\n\tStd Devs: "); for (int j = 0; j < m_ClusterStdDevs.numAttributes(); j++) { if (m_ClusterStdDevs.attribute(j).isNumeric()) { temp.append(" "+Utils.doubleToString(m_ClusterStdDevs.instance(i).value(j), maxWidth+5, 4)); } else { temp.append(" "+naString); } } } temp.append("\n\n"); return temp.toString(); } /** * Gets the the cluster centroids * * @return the cluster centroids */ public Instances getClusterCentroids() { return m_ClusterCentroids; } /** * Gets the standard deviations of the numeric attributes in each cluster * * @return the standard deviations of the numeric attributes * in each cluster */ public Instances getClusterStandardDevs() { return m_ClusterStdDevs; } /** * Returns for each cluster the frequency counts for the values of each * nominal attribute * * @return the counts */ public int [][][] getClusterNominalCounts() { return m_ClusterNominalCounts; } /** * Gets the squared error for all clusters * * @return the squared error */ public double getSquaredError() { return Utils.sum(m_squaredErrors); } /** * Gets the number of instances in each cluster * * @return The number of instances in each cluster */ public int [] getClusterSizes() { return m_ClusterSizes; } /** * Main method for testing this class. * * @param argv should contain the following arguments: <p> * -t training file [-N number of clusters] */ public static void main (String[] argv) { runClusterer(new SimpleKMeans(), argv); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -