📄 pcprb1.f90
字号:
program pcprb1!!*******************************************************************************!!! PCPRB1 runs a problem involving the Freudenstein-Roth function.!!! Modified:!! 12 November 1999!! Reference:!! F Freudenstein, B Roth,! Numerical Solutions of Nonlinear Equations,! Journal of the Association for Computing Machinery,! Volume 10, 1963, Pages 550-556.!! Function:!! FX(1) = X1 - X2**3 + 5*X2**2 - 2*X2 - 13 + 34*(X3-1)! FX(2) = X1 + X2**3 + X2**2 - 14*X2 - 29 + 10*(X3-1)!! Starting from the point (15,-2,0), the program is required to produce! solution points along the curve until it reaches a solution point! (*,*,1). It also may be requested to look for limit points in the! first or third components.!! The correct value of the solution at X3=1 is (5,4,1).!! Limit points in the first variable occur at:!! (14.28309, -1.741377, 0.2585779)! (61.66936, 1.983801, -0.6638797)!! Limit points for the third variable occur at:!! (20.48586, -0.8968053, 0.5875873)! (61.02031, 2.230139, -0.6863528)! implicit none! integer, parameter :: nvar = 3 integer, parameter :: liw = nvar + 29 integer, parameter :: lrw = 29 + ( 6 + nvar ) * nvar! external dfroth external dge_slv double precision fpar(1) external fxroth integer i integer ierror integer ipar(1) integer iwork(liw) integer j character ( len = 12 ) name double precision rwork(lrw) double precision xr(nvar)!! Set work arrays to zero:! iwork(1:liw) = 0 rwork(1:lrw) = 0.0E+00!! Set some entries of work arrays.!! IWORK(1)=0 ; This is a startup! IWORK(2)=2 ; Use X(2) for initial parameter! IWORK(3)=0 ; Program may choose parameter index! IWORK(4)=0 ; Update jacobian every newton step! IWORK(5)=3 ; Seek target values for X(3)! IWORK(6)=1 ; Seek limit points in X(1)! IWORK(7)=1 ; Control amount of output.! IWORK(9)=0 ; Jacobian choice.! iwork(1) = 0 iwork(2) = 2 iwork(3) = 0 iwork(4) = 0 iwork(5) = 3 iwork(6) = 1 iwork(7) = 3 iwork(9) = 0!! RWORK(1)=0.00001; Absolute error tolerance! RWORK(2)=0.00001; Relative error tolerance! RWORK(3)=0.01 ; Minimum stepsize! RWORK(4)=10.0 ; Maximum stepsize! RWORK(5)=0.3 ; Starting stepsize! RWORK(6)=1.0 ; Starting direction! RWORK(7)=1.0 ; Target value (Seek solution with X(3)=1)! rwork(1) = 0.00001E+00 rwork(2) = 0.00001E+00 rwork(3) = 0.01E+00 rwork(4) = 10.0E+00 rwork(5) = 0.3E+00 rwork(6) = 1.0E+00 rwork(7) = 1.0E+00!! Set the starting point.! xr(1:3) = (/ 15.0E+00, -2.0E+00, 0.0E+00 /) write ( *, * ) ' ' write ( *, * ) 'PCPRB1:' write ( *, * ) ' PITCON test problem' write ( *, * ) ' Freudenstein-Roth function' write ( *, * ) ' ' write ( *, * ) ' Number of equations is ', nvar - 1 write ( *, * ) ' Number of variables is ', nvar write ( *, * ) ' ' write ( *, * ) ' Step Type of point X(1) X(2) X(3)' write ( *, * ) ' ' i = 0 name = 'Start point ' write ( *, '(i3,2x,a12,2x,3g14.6)' ) i, name, xr(1:nvar) do i = 1, 30 call pitcon ( dfroth, fpar, fxroth, ierror, ipar, iwork, liw, & nvar, rwork, lrw, xr, dge_slv ) if ( iwork(1) == 1 ) then name = 'Corrected ' else if ( iwork(1) == 2 ) then name = 'Continuation ' else if ( iwork(1) == 3 ) then name = 'Target point ' else if ( iwork(1) == 4 ) then name = 'Limit point ' else if ( iwork(1) < 0 ) then name = 'Jacobian ' end if write ( *, '(i3,2x,a12,2x,3g14.6)' ) i, name, xr(1:nvar) if ( iwork(1) == 3 ) then write ( *, * ) ' ' write ( *, * ) 'PITCON reached the target point.' write ( *, * ) ' ' write ( *, * ) 'The computation succeeded.' stop end if if ( ierror /= 0 ) then write ( *, * ) ' ' write ( *, * ) 'PITCON returned an error code:' write ( *, * ) 'IERROR = ', ierror write ( *, * ) ' ' write ( *, * ) 'The computation failed.' stop end if end do write ( *, * ) ' ' write ( *, * ) 'PITCON took the maximum number of steps,' write ( *, * ) 'but did not reach the point of interest.' write ( *, * ) ' ' write ( *, * ) 'The computation failed, but might succeed' write ( *, * ) 'if more steps are allowed.' stopendsubroutine fxroth ( nvar, fpar, ipar, x, f )!!*******************************************************************************!!! FXROTH evaluates the function F(X) at X.!!! Function:!! ( X1 - ((X2-5.0)*X2+2.0)*X2 - 13.0 + 34.0*(X3-1.0) )! ( X1 + ((X2+1.0)*X2-14.0)*X2 - 29.0 + 10.0*(X3-1.0) )! implicit none! integer nvar! double precision f(*) double precision fpar(*) integer ipar(*) double precision x(nvar)! f(1) = x(1) - ( ( x(2) - 5.0E+00 ) * x(2) + 2.0E+00 ) * x(2) - 13.0E+00 & + 34.0E+00 * ( x(3) - 1.0E+00 ) f(2) = x(1) + ( ( x(2) + 1.0E+00 ) * x(2) - 14.0E+00 ) * x(2) - 29.0E+00 & + 10.0E+00 * ( x(3) - 1.0E+00 ) returnendsubroutine dfroth ( nvar, fpar, ipar, x, fjac )!!*******************************************************************************!!! DFROTH evaluates the Jacobian J(X) at X.!!! Jacobian:!! ( 1.0 (-3.0*X(2)+10.0)*X(2)- 2.0 34.0 )! ( 1.0 ( 3.0*X(2)+ 2.0)*X(2)-14.0 10.0 )! implicit none! integer nvar! double precision fjac(nvar,nvar) double precision fpar(*) integer ipar(*) double precision x(nvar)! fjac(1,1) = 1.0E+00 fjac(1,2) = ( - 3.0E+00 * x(2) + 10.0E+00 ) * x(2) - 2.0E+00 fjac(1,3) = 34.0E+00 fjac(2,1) = 1.0E+00 fjac(2,2) = ( 3.0E+00 * x(2) + 2.0E+00 ) * x(2) - 14.0E+00 fjac(2,3) = 10.0E+00 returnend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -