⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pcprb1.f90

📁 求解非线性方程组的一组源代码,FORTRAN90.用于解决N个未知数,N-1个方程.
💻 F90
字号:
program pcprb1!!*******************************************************************************!!! PCPRB1 runs a problem involving the Freudenstein-Roth function.!!!  Modified:!!    12 November 1999!!  Reference:!!    F Freudenstein, B Roth,!    Numerical Solutions of Nonlinear Equations,!    Journal of the Association for Computing Machinery,!    Volume 10, 1963, Pages 550-556.!!  Function:!!    FX(1) = X1 - X2**3 + 5*X2**2 -  2*X2 - 13 + 34*(X3-1)!    FX(2) = X1 + X2**3 +   X2**2 - 14*X2 - 29 + 10*(X3-1)!!  Starting from the point (15,-2,0), the program is required to produce!  solution points along the curve until it reaches a solution point!  (*,*,1).  It also may be requested to look for limit points in the!  first or third components.!!  The correct value of the solution at X3=1 is (5,4,1).!!  Limit points in the first variable occur at:!!    (14.28309, -1.741377,  0.2585779)!    (61.66936,  1.983801, -0.6638797)!!  Limit points for the third variable occur at:!!    (20.48586, -0.8968053, 0.5875873)!    (61.02031,  2.230139, -0.6863528)!  implicit none!  integer, parameter :: nvar = 3  integer, parameter :: liw = nvar + 29  integer, parameter :: lrw = 29 + ( 6 + nvar ) * nvar!  external dfroth  external dge_slv  double precision fpar(1)  external fxroth  integer i  integer ierror  integer ipar(1)  integer iwork(liw)  integer j  character ( len = 12 ) name  double precision rwork(lrw)  double precision xr(nvar)!!  Set work arrays to zero:!  iwork(1:liw) = 0  rwork(1:lrw) = 0.0E+00!!  Set some entries of work arrays.!!  IWORK(1)=0 ; This is a startup!  IWORK(2)=2 ; Use X(2) for initial parameter!  IWORK(3)=0 ; Program may choose parameter index!  IWORK(4)=0 ; Update jacobian every newton step!  IWORK(5)=3 ; Seek target values for X(3)!  IWORK(6)=1 ; Seek limit points in X(1)!  IWORK(7)=1 ; Control amount of output.!  IWORK(9)=0 ; Jacobian choice.!  iwork(1) = 0  iwork(2) = 2  iwork(3) = 0  iwork(4) = 0  iwork(5) = 3  iwork(6) = 1  iwork(7) = 3  iwork(9) = 0!!  RWORK(1)=0.00001; Absolute error tolerance!  RWORK(2)=0.00001; Relative error tolerance!  RWORK(3)=0.01   ; Minimum stepsize!  RWORK(4)=10.0   ; Maximum stepsize!  RWORK(5)=0.3    ; Starting stepsize!  RWORK(6)=1.0    ; Starting direction!  RWORK(7)=1.0    ; Target value (Seek solution with X(3)=1)!  rwork(1) = 0.00001E+00  rwork(2) = 0.00001E+00  rwork(3) = 0.01E+00  rwork(4) = 10.0E+00  rwork(5) = 0.3E+00  rwork(6) = 1.0E+00  rwork(7) = 1.0E+00!!  Set the starting point.!  xr(1:3) =  (/ 15.0E+00, -2.0E+00, 0.0E+00 /)  write ( *, * ) ' '  write ( *, * ) 'PCPRB1:'  write ( *, * ) '  PITCON test problem'  write ( *, * ) '  Freudenstein-Roth function'  write ( *, * ) ' '  write ( *, * ) '  Number of equations is ', nvar - 1  write ( *, * ) '  Number of variables is ', nvar  write ( *, * ) ' '  write ( *, * ) '  Step  Type of point     X(1)         X(2)         X(3)'  write ( *, * ) ' '  i = 0  name = 'Start point  '  write ( *, '(i3,2x,a12,2x,3g14.6)' ) i, name, xr(1:nvar)  do i = 1, 30    call pitcon ( dfroth, fpar, fxroth, ierror, ipar, iwork, liw, &      nvar, rwork, lrw, xr, dge_slv )    if ( iwork(1) == 1 ) then      name = 'Corrected    '    else if ( iwork(1) == 2 ) then      name = 'Continuation '    else if ( iwork(1) == 3 ) then      name = 'Target point '    else if ( iwork(1) == 4 ) then      name = 'Limit point  '    else if ( iwork(1) < 0 ) then      name = 'Jacobian   '    end if    write ( *, '(i3,2x,a12,2x,3g14.6)' ) i, name, xr(1:nvar)    if ( iwork(1) == 3 ) then      write ( *, * ) ' '      write ( *, * ) 'PITCON reached the target point.'      write ( *, * ) ' '      write ( *, * ) 'The computation succeeded.'      stop    end if    if ( ierror /= 0 ) then      write ( *, * ) ' '      write ( *, * ) 'PITCON returned an error code:'      write ( *, * ) 'IERROR = ', ierror      write ( *, * ) ' '      write ( *, * ) 'The computation failed.'      stop    end if  end do  write ( *, * ) ' '  write ( *, * ) 'PITCON took the maximum number of steps,'  write ( *, * ) 'but did not reach the point of interest.'  write ( *, * ) ' '  write ( *, * ) 'The computation failed, but might succeed'  write ( *, * ) 'if more steps are allowed.'  stopendsubroutine fxroth ( nvar, fpar, ipar, x, f )!!*******************************************************************************!!! FXROTH evaluates the function F(X) at X.!!!  Function:!!    ( X1 - ((X2-5.0)*X2+2.0)*X2 - 13.0 + 34.0*(X3-1.0)  )!    ( X1 + ((X2+1.0)*X2-14.0)*X2 - 29.0 + 10.0*(X3-1.0) )!  implicit none!  integer nvar!  double precision f(*)  double precision fpar(*)  integer ipar(*)  double precision x(nvar)!  f(1) = x(1) - ( ( x(2) - 5.0E+00 ) * x(2) + 2.0E+00 ) * x(2) - 13.0E+00 &         + 34.0E+00 * ( x(3) - 1.0E+00 )  f(2) = x(1) + ( ( x(2) + 1.0E+00 ) * x(2) - 14.0E+00 ) * x(2) - 29.0E+00 &         + 10.0E+00 * ( x(3) - 1.0E+00 )  returnendsubroutine dfroth ( nvar, fpar, ipar, x, fjac )!!*******************************************************************************!!! DFROTH evaluates the Jacobian J(X) at X.!!!  Jacobian:!!    ( 1.0   (-3.0*X(2)+10.0)*X(2)- 2.0   34.0  )!    ( 1.0   ( 3.0*X(2)+ 2.0)*X(2)-14.0   10.0  )!  implicit none!  integer nvar!  double precision fjac(nvar,nvar)  double precision fpar(*)  integer ipar(*)  double precision x(nvar)!  fjac(1,1) = 1.0E+00  fjac(1,2) = ( - 3.0E+00 * x(2) + 10.0E+00 ) * x(2) - 2.0E+00  fjac(1,3) = 34.0E+00  fjac(2,1) = 1.0E+00  fjac(2,2) = ( 3.0E+00 * x(2) + 2.0E+00 ) * x(2) - 14.0E+00  fjac(2,3) = 10.0E+00  returnend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -