📄 zjwnnc.m
字号:
function[c ,w ,nr ] = zjwnnc (p ,t ,r)
%ZJWNNC Design radial basis network using Nearest
% Neighbor - Clusting Algorithm
%
%[C ,W ,NR] = ZJWNNC[ P ,T ,R]
% P - RxQ matrix of Q input vectors.
% T - SxQ matrix of Q target vectors.
% R - Spread of radial basis functions ,default = 1. 0
%Returns :
% C - RxM center matrix for neurons vectors.
% W - SxM weight matrix for linear layer.
% NR - the number of radial basis neurons used.
% p=[1 2 3; 4 5 6; 7 8 9];
% t=[1;2;3]';
% r=1;
% if nargin < 2
% error ('Not enough input arguments') ;
% end
% % the default value of r is 1. 0
% if nargin==2
% r = 1.0 ;
% end
er=0;
nr=1;
[rr,q]=size(p);
[s,q]=size(t);
c=p(:,1);
a=t(:,1);
b=1;
w=a./b;
for i=2:q
x=p(:,i);
[rr,nr]=size(c);
y = c ( : ,1) ;
mind=distvector(x,y);
minc=1;
if nr>=2
for j=2:nr
y=c(:,j);
d=distvector(x,y);
if d<mind
mind=d;
minc=j;
end
end
end
if mind<=r
a(:,minc)=a(:,minc)+t(:,i);
b(:,minc)=b(:,minc)+1;
w(:,minc)=a(:,minc)./b(:,minc);
else
nr=nr+1;
c(:,nr)=p(:,i);
a(:,nr)=t(:,i);
b(:,nr)=1;
w(:,nr)=a(:,nr)./b(nr);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -