⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arqr.m

📁 利用AR模型进行建模 可以仿真信号 希望对大家有用
💻 M
字号:
function [R, scale]=arqr(v, p, mcor)%ARQR	QR factorization for least squares estimation of AR model.%%  [R, SCALE]=ARQR(v,p,mcor) computes the QR factorization needed in%  the least squares estimation of parameters of an AR(p) model. If%  the input flag mcor equals one, a vector of intercept terms is%  being fitted. If mcor equals zero, the process v is assumed to have%  mean zero. The output argument R is the upper triangular matrix%  appearing in the QR factorization of the AR model, and SCALE is a%  vector of scaling factors used to regularize the QR factorization.%%  ARQR is called by ARFIT. %%  See also ARFIT.%  Modified 29-Dec-99%  Author: Tapio Schneider%          tapio@gps.caltech.edu  % n: number of time steps; m: dimension of state vectors  [n,m] = size(v);       ne    = n-p;                  % number of block equations of size m  np    = m*p+mcor;             % number of parameter vectors of size m  % If the intercept vector w is to be fitted, least squares (LS)  % estimation proceeds by solving the normal equations for the linear  % regression model  %  %                  v(k,:)' = Aaug*u(k,:)' + noise(C)  %  % with Aaug=[w A] and `predictors'   %  %              u(k,:) = [1 v(k-1,:) ...  v(k-p,:)].   %  % If the process mean is taken to be zero, the augmented coefficient  % matrix is Aaug=A, and the regression model  %  %                u(k,:) = [v(k-1,:) ...  v(k-p,:)]  %  % is fitted.   % The number np is the dimension of the `predictors' u(k).   % Assemble the data matrix K (of which a QR factorization will be computed)  K = zeros(ne,np+m);                 % initialize K  if (mcor == 1)    % first column of K consists of ones for estimation of intercept vector w    K(:,1) = ones(ne,1);  end    % Assemble `predictors' u in K   for j=1:p    K(:, mcor+m*(j-1)+1:mcor+m*j) = [v(p-j+1:n-j, :)];  end  % Add `observations' v (left hand side of regression model) to K  K(:,np+1:np+m) = [v(p+1:n, :)];    % Compute regularized QR factorization of K: The regularization  % parameter delta is chosen according to Higham's (1996) Theorem  % 10.7 on the stability of a Cholesky factorization. Replace the  % regularization parameter delta below by a parameter that depends  % on the observational error if the observational error dominates  % the rounding error (cf. Neumaier, A. and T. Schneider, 2001:  % "Estimation of parameters and eigenmodes of multivariate  % autoregressive models", ACM Trans. Math. Softw., 27, 27--57.).  q     = np + m;             % number of columns of K  delta = (q^2 + q + 1)*eps;  % Higham's choice for a Cholesky factorization  scale = sqrt(delta)*sqrt(sum(K.^2));     R     = triu(qr([K; diag(scale)]));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -