📄 standard_1c6.v
字号:
//megafunction wizard: %Altera SOPC Builder%
//GENERATION: STANDARD
//VERSION: WM1.0
//Legal Notice: (C)2005 Altera Corporation. All rights reserved. Your
//use of Altera Corporation's design tools, logic functions and other
//software and tools, and its AMPP partner logic functions, and any
//output files any of the foregoing (including device programming or
//simulation files), and any associated documentation or information are
//expressly subject to the terms and conditions of the Altera Program
//License Subscription Agreement or other applicable license agreement,
//including, without limitation, that your use is for the sole purpose
//of programming logic devices manufactured by Altera and sold by Altera
//or its authorized distributors. Please refer to the applicable
//agreement for further details.
// synthesis translate_off
`timescale 1ns / 100ps
// synthesis translate_on
module DM9000_IRQ_s1_arbitrator (
// inputs:
DM9000_IRQ_s1_irq,
DM9000_IRQ_s1_readdata,
clk,
cpu_0_data_master_address_to_slave,
cpu_0_data_master_read,
cpu_0_data_master_waitrequest,
cpu_0_data_master_write,
cpu_0_data_master_writedata,
reset_n,
// outputs:
DM9000_IRQ_s1_address,
DM9000_IRQ_s1_chipselect,
DM9000_IRQ_s1_irq_from_sa,
DM9000_IRQ_s1_readdata_from_sa,
DM9000_IRQ_s1_reset_n,
DM9000_IRQ_s1_write_n,
DM9000_IRQ_s1_writedata,
cpu_0_data_master_granted_DM9000_IRQ_s1,
cpu_0_data_master_qualified_request_DM9000_IRQ_s1,
cpu_0_data_master_read_data_valid_DM9000_IRQ_s1,
cpu_0_data_master_requests_DM9000_IRQ_s1,
d1_DM9000_IRQ_s1_end_xfer
);
output [ 1: 0] DM9000_IRQ_s1_address;
output DM9000_IRQ_s1_chipselect;
output DM9000_IRQ_s1_irq_from_sa;
output DM9000_IRQ_s1_readdata_from_sa;
output DM9000_IRQ_s1_reset_n;
output DM9000_IRQ_s1_write_n;
output DM9000_IRQ_s1_writedata;
output cpu_0_data_master_granted_DM9000_IRQ_s1;
output cpu_0_data_master_qualified_request_DM9000_IRQ_s1;
output cpu_0_data_master_read_data_valid_DM9000_IRQ_s1;
output cpu_0_data_master_requests_DM9000_IRQ_s1;
output d1_DM9000_IRQ_s1_end_xfer;
input DM9000_IRQ_s1_irq;
input DM9000_IRQ_s1_readdata;
input clk;
input [ 26: 0] cpu_0_data_master_address_to_slave;
input cpu_0_data_master_read;
input cpu_0_data_master_waitrequest;
input cpu_0_data_master_write;
input [ 31: 0] cpu_0_data_master_writedata;
input reset_n;
wire [ 1: 0] DM9000_IRQ_s1_address;
wire DM9000_IRQ_s1_allgrants;
wire DM9000_IRQ_s1_allow_new_arb_cycle;
wire DM9000_IRQ_s1_any_continuerequest;
wire DM9000_IRQ_s1_arb_counter_enable;
reg [ 1: 0] DM9000_IRQ_s1_arb_share_counter;
wire [ 1: 0] DM9000_IRQ_s1_arb_share_counter_next_value;
wire [ 1: 0] DM9000_IRQ_s1_arb_share_set_values;
wire DM9000_IRQ_s1_arbitration_holdoff_internal;
wire DM9000_IRQ_s1_beginbursttransfer_internal;
wire DM9000_IRQ_s1_begins_xfer;
wire DM9000_IRQ_s1_chipselect;
wire DM9000_IRQ_s1_end_xfer;
wire DM9000_IRQ_s1_firsttransfer;
wire DM9000_IRQ_s1_grant_vector;
wire DM9000_IRQ_s1_in_a_read_cycle;
wire DM9000_IRQ_s1_in_a_write_cycle;
wire DM9000_IRQ_s1_irq_from_sa;
wire DM9000_IRQ_s1_master_qreq_vector;
wire DM9000_IRQ_s1_readdata_from_sa;
wire DM9000_IRQ_s1_reset_n;
reg DM9000_IRQ_s1_slavearbiterlockenable;
wire DM9000_IRQ_s1_waits_for_read;
wire DM9000_IRQ_s1_waits_for_write;
wire DM9000_IRQ_s1_write_n;
wire DM9000_IRQ_s1_writedata;
wire cpu_0_data_master_arbiterlock;
wire cpu_0_data_master_continuerequest;
wire cpu_0_data_master_granted_DM9000_IRQ_s1;
wire cpu_0_data_master_qualified_request_DM9000_IRQ_s1;
wire cpu_0_data_master_read_data_valid_DM9000_IRQ_s1;
wire cpu_0_data_master_requests_DM9000_IRQ_s1;
wire cpu_0_data_master_saved_grant_DM9000_IRQ_s1;
reg d1_DM9000_IRQ_s1_end_xfer;
reg d1_reasons_to_wait;
wire in_a_read_cycle;
wire in_a_write_cycle;
wire wait_for_DM9000_IRQ_s1_counter;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_reasons_to_wait <= 0;
else if (1)
d1_reasons_to_wait <= ~DM9000_IRQ_s1_end_xfer;
end
assign DM9000_IRQ_s1_begins_xfer = ~d1_reasons_to_wait & ((cpu_0_data_master_qualified_request_DM9000_IRQ_s1));
//assign DM9000_IRQ_s1_readdata_from_sa = DM9000_IRQ_s1_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
assign DM9000_IRQ_s1_readdata_from_sa = DM9000_IRQ_s1_readdata;
assign cpu_0_data_master_requests_DM9000_IRQ_s1 = ({cpu_0_data_master_address_to_slave[26 : 4] , 4'b0} == 27'h280210) & (cpu_0_data_master_read | cpu_0_data_master_write);
//DM9000_IRQ_s1_arb_share_counter set values, which is an e_mux
assign DM9000_IRQ_s1_arb_share_set_values = 1;
//DM9000_IRQ_s1_arb_share_counter_next_value assignment, which is an e_assign
assign DM9000_IRQ_s1_arb_share_counter_next_value = DM9000_IRQ_s1_firsttransfer ? (DM9000_IRQ_s1_arb_share_set_values - 1) : |DM9000_IRQ_s1_arb_share_counter ? (DM9000_IRQ_s1_arb_share_counter - 1) : 0;
//DM9000_IRQ_s1_allgrants all slave grants, which is an e_mux
assign DM9000_IRQ_s1_allgrants = |DM9000_IRQ_s1_grant_vector;
//DM9000_IRQ_s1_end_xfer assignment, which is an e_assign
assign DM9000_IRQ_s1_end_xfer = ~(DM9000_IRQ_s1_waits_for_read | DM9000_IRQ_s1_waits_for_write);
//DM9000_IRQ_s1_arb_share_counter arbitration counter enable, which is an e_assign
assign DM9000_IRQ_s1_arb_counter_enable = DM9000_IRQ_s1_end_xfer & DM9000_IRQ_s1_allgrants;
//DM9000_IRQ_s1_arb_share_counter counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
DM9000_IRQ_s1_arb_share_counter <= 0;
else if (DM9000_IRQ_s1_arb_counter_enable)
DM9000_IRQ_s1_arb_share_counter <= DM9000_IRQ_s1_arb_share_counter_next_value;
end
//DM9000_IRQ_s1_slavearbiterlockenable slave enables arbiterlock, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
DM9000_IRQ_s1_slavearbiterlockenable <= 0;
else if (|DM9000_IRQ_s1_master_qreq_vector & DM9000_IRQ_s1_end_xfer)
DM9000_IRQ_s1_slavearbiterlockenable <= |DM9000_IRQ_s1_arb_share_counter_next_value;
end
//cpu_0/data_master DM9000_IRQ/s1 arbiterlock, which is an e_assign
assign cpu_0_data_master_arbiterlock = DM9000_IRQ_s1_slavearbiterlockenable & cpu_0_data_master_continuerequest;
//DM9000_IRQ_s1_any_continuerequest at least one master continues requesting, which is an e_assign
assign DM9000_IRQ_s1_any_continuerequest = 0;
//cpu_0_data_master_continuerequest continued request, which is an e_assign
assign cpu_0_data_master_continuerequest = 0;
assign cpu_0_data_master_qualified_request_DM9000_IRQ_s1 = cpu_0_data_master_requests_DM9000_IRQ_s1 & ~(((~cpu_0_data_master_waitrequest) & cpu_0_data_master_write));
//DM9000_IRQ_s1_writedata mux, which is an e_mux
assign DM9000_IRQ_s1_writedata = cpu_0_data_master_writedata;
//master is always granted when requested
assign cpu_0_data_master_granted_DM9000_IRQ_s1 = cpu_0_data_master_qualified_request_DM9000_IRQ_s1;
//cpu_0/data_master saved-grant DM9000_IRQ/s1, which is an e_assign
assign cpu_0_data_master_saved_grant_DM9000_IRQ_s1 = cpu_0_data_master_requests_DM9000_IRQ_s1;
//allow new arb cycle for DM9000_IRQ/s1, which is an e_assign
assign DM9000_IRQ_s1_allow_new_arb_cycle = 1;
//placeholder chosen master
assign DM9000_IRQ_s1_grant_vector = 1;
//placeholder vector of master qualified-requests
assign DM9000_IRQ_s1_master_qreq_vector = 1;
//DM9000_IRQ_s1_reset_n assignment, which is an e_assign
assign DM9000_IRQ_s1_reset_n = reset_n;
assign DM9000_IRQ_s1_chipselect = cpu_0_data_master_granted_DM9000_IRQ_s1;
//DM9000_IRQ_s1_firsttransfer first transaction, which is an e_assign
assign DM9000_IRQ_s1_firsttransfer = ~(DM9000_IRQ_s1_slavearbiterlockenable & DM9000_IRQ_s1_any_continuerequest);
//DM9000_IRQ_s1_beginbursttransfer_internal begin burst transfer, which is an e_assign
assign DM9000_IRQ_s1_beginbursttransfer_internal = DM9000_IRQ_s1_begins_xfer & DM9000_IRQ_s1_firsttransfer;
//DM9000_IRQ_s1_arbitration_holdoff_internal arbitration_holdoff, which is an e_assign
assign DM9000_IRQ_s1_arbitration_holdoff_internal = DM9000_IRQ_s1_begins_xfer & DM9000_IRQ_s1_firsttransfer;
//~DM9000_IRQ_s1_write_n assignment, which is an e_mux
assign DM9000_IRQ_s1_write_n = ~(cpu_0_data_master_granted_DM9000_IRQ_s1 & cpu_0_data_master_write);
//DM9000_IRQ_s1_address mux, which is an e_mux
assign DM9000_IRQ_s1_address = cpu_0_data_master_address_to_slave >> 2;
//d1_DM9000_IRQ_s1_end_xfer register, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_DM9000_IRQ_s1_end_xfer <= 1;
else if (1)
d1_DM9000_IRQ_s1_end_xfer <= DM9000_IRQ_s1_end_xfer;
end
//DM9000_IRQ_s1_waits_for_read in a cycle, which is an e_mux
assign DM9000_IRQ_s1_waits_for_read = DM9000_IRQ_s1_in_a_read_cycle & DM9000_IRQ_s1_begins_xfer;
//DM9000_IRQ_s1_in_a_read_cycle assignment, which is an e_assign
assign DM9000_IRQ_s1_in_a_read_cycle = cpu_0_data_master_granted_DM9000_IRQ_s1 & cpu_0_data_master_read;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -