⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 find_trise.m

📁 gps“可用性”matlab代码 Matlab Algorithm Availability Simulation Tool
💻 M
字号:
function trise = find_trise(tmin,tmax,sinmask,alm_param,usr_xyz,...                            usr_ehat,usr_nhat,usr_uhat)%*************************************************************************%*     Copyright c 2001 The board of trustees of the Leland Stanford     *%*                      Junior University. All rights reserved.          *%*     This script file may be distributed and used freely, provided     *%*     this copyright notice is always kept with it.                     *%*                                                                       *%*     Questions and comments should be directed to Todd Walter at:      *%*     twalter@stanford.edu                                              *%*************************************************************************%% created 2001 Apr 27 by Wyant Chan% major modification 2001 June 17 by Wyant Channsat = size(alm_param,1);nusr = size(usr_xyz,1);nlos = nsat*nusr;t = [tmin:300:tmax]';nt = length(t);maxnrise = 2;   % maximum number of rise times per los                % updates if a los with more rise times is found.trise = repmat(NaN,nlos,maxnrise);% trise_exact = repmat(NaN,nlos,maxnrise);for isat=1:nsat    [prn,satxyz,satvel]=alm2satposvel(t,alm_param(isat,:));       gxyzb = find_los_xyzb(usr_xyz,satxyz);    genub = find_los_enub(gxyzb,usr_ehat,usr_nhat,usr_uhat);    for iusr=1:nusr        sin_ellos = -genub((iusr-1)*nt+[1:nt],3);        idxrise = find(sin_ellos(2:end)>=sinmask & ...                        sin_ellos(1:end-1)<sinmask)+1;        if length(idxrise)>maxnrise,            trise = [trise,repmat(NaN,nlos,length(idxrise)-maxnrise)];%            trise_exact = [trise_exact,...%                    repmat(NaN,nlos,length(idxrise)-maxnrise)];            maxnrise = length(idxrise);        end        for j=1:length(idxrise)            i = idxrise(j);%            % find exact time%            t1 = [t(i-1):t(i)]';%            [prn1,satxyz1,satvel1]=alm2satposvel(t1,alm_param(isat,:));%            gxyzb1 = find_los_xyzb(usr_xyz(iusr,:),satxyz1);%            genub1 = find_los_enub(gxyzb1,...%                usr_ehat(iusr,:),usr_nhat(iusr,:),usr_uhat(iusr,:));%            sin_el1 = -genub1(:,3);%            idx=find(sin_el1(2:end)>=sinmask & sin_el1(1:end-1)<sinmask)+1;%            trise_exact((iusr-1)*nsat+isat,j) = t1(idx(1));            % Using quadratic interpolation on sin_el, tests using almmops and             % almyuma45 yielded 0 sec rounded error from actual rise time             % more than 96% of the time, with a max error of 1 sec             % at 1 sec resolution.  Using quad interp on the elevation rather            % than the sin(elev) yields 0 error 98% of the time.            if i==2             % at start                tr = quadfit(sinmask,[t(i-1),t(i),t(i+1)],...                            [sin_ellos(i-1),sin_ellos(i),sin_ellos(i+1)]);            elseif i==length(t) % at end                tr = quadfit(sinmask,[t(i-2),t(i-1),t(i)],...                            [sin_ellos(i-2),sin_ellos(i-1),sin_ellos(i)]);            elseif abs(sin_ellos(i-1)-sinmask)<abs(sin_ellos(i)-sinmask)                tr = quadfit(sinmask,[t(i-2),t(i-1),t(i)],...                            [sin_ellos(i-2),sin_ellos(i-1),sin_ellos(i)]);            else                tr = quadfit(sinmask,[t(i-1),t(i),t(i+1)],...                            [sin_ellos(i-1),sin_ellos(i),sin_ellos(i+1)]);            end            % use first integer second after rise as rise time            trise((iusr-1)*nsat+isat,j) = ceil(tr);        end    endend% TODO: guard against brief set or rise that might not be detected

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -