📄 pbarpcf_huzi.m
字号:
clear all
m=sqrt(-1);
delta=0.101043;
a1=-0.850848;
sample=32; %采样点
p=10; %number of sample spot in coef method;
%f1=0.05; f2=0.40; f3=0.42;
f1=0.05; f2=0.30; f3=0.42;
fstep=0.01;
fstart=-0.5;
fend=0.5;
f=fstart:fstep:fend;
nfft=(fend-fstart)/fstep+1;
%构造噪声:高斯白噪声,正态分布,复数un=urn+juin
urn= normrnd(0,delta/2,1,sample);
uin= normrnd(0,delta/2,1,sample);
un=urn+m*uin;
%计算 zn
for n=1:sample-1
zn(1)=un(1);
zn(n+1)=-a1*zn(n)+un(n+1);
end
%求xn
for n=1:sample
xn(n)=2*cos(2*pi*f1*(n-1))+2*cos(2*pi*f2*(n-1))+2*cos(2*pi*f3*(n-1))+sqrt(2)*real(zn(n));
end
x=xn;
M=31;
for k=0:1:sample-1
s=0;
for n=1:sample-k,
s=s+conj(x(1,n))*x(1,n+k);
end
rxx(1,k+1)=(1/sample)*s; %用有偏估计
end
Rxx=toeplitz(rxx(1,1:32)); %变矩阵
[U,S,V]=svd(Rxx);
for i=1:length(f)
for j=1:sample
ei(1,j)=exp(-2*pi*(j-1)*f(i)*m); %设定E矩阵
end;
sum=0;
for k=1:6
sum=sum+S(k,k)*abs(ei*V(:,k))^2;
end
Pbarpcf(1,i)=sum/M;
end
figure(4)
plot(f,Pbarpcf);
title('巴特利特主分量估计算法f2=0.30时')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -