⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ghmm_emission.cpp

📁 General Hidden Markov Model Library 一个通用的隐马尔科夫模型的C代码库
💻 CPP
字号:
/* * created: 21 Feb 2002 by Peter Pipenbacher * authors: Peter Pipenbacher (pipenb@zpr.uni-koeln.de) * file   : $Source$ * $Id: GHMM_Emission.cpp 275 2003-09-18 10:04:49Z cic99 $ * * __copyright__ */#include <xmlio/XMLIO_Document.h>#include "ghmm++/GHMM_Emission.h"#include "ghmm++/GHMM_State.h"#include "ghmm++/GHMM_ContinuousModel.h"#include "ghmm++/GHMM_DiscreteModel.h"#include "ghmm++/GHMM_Alphabet.h"#include <iostream>#ifdef HAVE_NAMESPACESusing namespace std;#endifXMLIO_Element* GHMM_CEmission::XMLIO_startTag(const string& tag, XMLIO_Attributes &attrs) {  bool found = false;   if (tag == "gauss") {    mue.push_back(atof(attrs["mue"].c_str()));    variance.push_back(atof(attrs["variance"].c_str()));    density  = normal;    found    = true;  }  if (tag == "gauss-positive") {    mue.push_back(atof(attrs["mue"].c_str()));    variance.push_back(atof(attrs["variance"].c_str()));    density  = normal_pos;    found    = true;  }  if (tag == "gauss-approximated") {    mue.push_back(atof(attrs["mue"].c_str()));    variance.push_back(atof(attrs["variance"].c_str()));    density  = normal_approx;    found    = true;  }    if (! found) {    fprintf(stderr,"<emission> element of state '%s' has unrecognized tag '%s'.\n",	    state->id.c_str(),tag.c_str());    exit(1);  }    if (attrs["mue"] == "") {    fprintf(stderr,"<%s> element of state '%s' lacks mue attribute.\n",	    tag.c_str(),state->id.c_str());    exit(1);  }  if (attrs["variance"] == "") {    fprintf(stderr,"<%s> element of state '%s' lacks variance attribute.\n",	    tag.c_str(),state->id.c_str());    exit(1);  }  return NULL;}void GHMM_CEmission::XMLIO_getCharacters(const string& characters) {  unsigned int pos;  for (pos = 0; pos < characters.size(); ++pos) {    while (pos < characters.size() && isspace(characters[pos]))      ++pos;    if (pos < characters.size())      weights.push_back(atof(characters.substr(pos).c_str()));    while (pos < characters.size() && !isspace(characters[pos]))      ++pos;  }}void GHMM_CEmission::XMLIO_finishedReading() {  /* continuous model */  if (weights.size() != mue.size()) {    fprintf(stderr,"Different number of weights and density functions in state '%s'.\n",state->id.c_str());    exit(1);  }}const int GHMM_CEmission::XMLIO_writeContent(XMLIO_Document& writer) {  int result = 0;  writer.changeIndent(2);    /* continuous model */  if (state->c_sstate) {    result = writer.writef("1 <");    switch (density) {    case normal:      result += writer.write("gauss");      break;    case normal_pos:      result += writer.write("gauss-positive");      break;    case normal_approx:      result += writer.write("gauss-approximated");      break;    default:      break;    }    result += writer.writef(" mue=\"%f\" variance=\"%f\">",mue[0],variance[0]);  }  return result;}const int GHMM_DEmission::XMLIO_writeContent(XMLIO_Document& writer) {  int result = 0;  int i;    writer.changeIndent(2);  GHMM_Alphabet* alphabet = state->getModel()->getAlphabet();  GHMM_DiscreteModel* model = (GHMM_DiscreteModel*) state->getModel();  result += writer.writeEndl();  for (i = 0; i < model->c_model->M; ++i) {    result += writer.writef("%s%.2f",writer.indent,state->c_state->b[i]);    if (alphabet)      result += writer.writef(" <!-- %s -->",alphabet->getSymbol(i).c_str());    result += writer.writeEndl();  }  return result;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -