⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reestimate.h

📁 General Hidden Markov Model Library 一个通用的隐马尔科夫模型的C代码库
💻 H
字号:
/*********************************************************************************       This file is part of the General Hidden Markov Model Library,*       GHMM version 0.8_beta1, see http://ghmm.org**       Filename: ghmm/ghmm/reestimate.h*       Authors:  Bernhard Knab, Benjamin Georgi**       Copyright (C) 1998-2004 Alexander Schliep *       Copyright (C) 1998-2001 ZAIK/ZPR, Universitaet zu Koeln*	Copyright (C) 2002-2004 Max-Planck-Institut fuer Molekulare Genetik, *                               Berlin*                                   *       Contact: schliep@ghmm.org             **       This library is free software; you can redistribute it and/or*       modify it under the terms of the GNU Library General Public*       License as published by the Free Software Foundation; either*       version 2 of the License, or (at your option) any later version.**       This library is distributed in the hope that it will be useful,*       but WITHOUT ANY WARRANTY; without even the implied warranty of*       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU*       Library General Public License for more details.**       You should have received a copy of the GNU Library General Public*       License along with this library; if not, write to the Free*       Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA***       This file is version $Revision: 1713 $ *                       from $Date: 2006-10-16 16:06:28 +0200 (Mon, 16 Oct 2006) $*             last change by $Author: grunau $.********************************************************************************/#ifndef GHMM_REESTIMATE_H#define GHMM_REESTIMATE_H#include "sequence.h"#include "model.h"#ifdef __cplusplusextern "C" {#endif/**@name Baum-Welch-Algorithmus *//*@{ (Doc++-Group: reestimate) *//** Baum-Welch-Algorithm for parameter reestimation (training) in    a discrete (discrete output functions) HMM. Scaled version    for multiple sequences, alpha and beta matrices are allocated with	ighmm_cmatrix_stat_alloc     New parameters set directly in hmm (no storage of previous values!).    For reference see:      Rabiner, L.R.: "`A Tutorial on Hidden {Markov} Models and Selected                Applications in Speech Recognition"', Proceedings of the IEEE,	77, no 2, 1989, pp 257--285      @return            0/-1 success/error  @param mo          initial model  @param sq          training sequences  */  int ghmm_dmodel_baum_welch (ghmm_dmodel * mo, ghmm_dseq * sq);/** Just like reestimate_baum_welch, but you can limit    the maximum number of steps  @return            0/-1 success/error  @param mo          initial model  @param sq          training sequences  @param max_step    maximal number of Baum-Welch steps  @param likelihood_delta minimal improvement in likelihood required for carrying on. Relative value  to log likelihood  */  int ghmm_dmodel_baum_welch_nstep (ghmm_dmodel * mo, ghmm_dseq * sq, int max_step,                                   double likelihood_delta);/** Baum-Welch-Algorithm for parameter reestimation (training) in    a StateLabelHMM. Scaled version for multiple sequences, alpha and     beta matrices are allocated with ighmm_cmatrix_stat_alloc     New parameters set directly in hmm (no storage of previous values!).    For reference see:      Rabiner, L.R.: "`A Tutorial on Hidden {Markov} Models and Selected                Applications in Speech Recognition"', Proceedings of the IEEE,	77, no 2, 1989, pp 257--285      @return            0/-1 success/error  @param mo          initial model  @param sq          training sequences  */  int ghmm_dmodel_label_baum_welch (ghmm_dmodel * mo, ghmm_dseq * sq);/** Just like reestimate_baum_welch_label, but you can limit    the maximum number of steps  @return                   0/-1 success/error  @param mo                 initial model  @param sq                 training sequences  @param max_step           maximal number of Baum-Welch steps  @param likelihood_delta   minimal improvement in likelihood required for                            carrying on. Relative value to log likelihood  */  int ghmm_dmodel_label_baum_welch_nstep (ghmm_dmodel * mo, ghmm_dseq * sq,                                         int max_step,                                         double likelihood_delta);#ifdef __cplusplus}#endif#endif                          /* GHMM_REESTIMATE_H *//*@} (Doc++-Group: reestimate) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -