📄 reestimate.h
字号:
/********************************************************************************* This file is part of the General Hidden Markov Model Library,* GHMM version 0.8_beta1, see http://ghmm.org** Filename: ghmm/ghmm/reestimate.h* Authors: Bernhard Knab, Benjamin Georgi** Copyright (C) 1998-2004 Alexander Schliep * Copyright (C) 1998-2001 ZAIK/ZPR, Universitaet zu Koeln* Copyright (C) 2002-2004 Max-Planck-Institut fuer Molekulare Genetik, * Berlin* * Contact: schliep@ghmm.org ** This library is free software; you can redistribute it and/or* modify it under the terms of the GNU Library General Public* License as published by the Free Software Foundation; either* version 2 of the License, or (at your option) any later version.** This library is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU* Library General Public License for more details.** You should have received a copy of the GNU Library General Public* License along with this library; if not, write to the Free* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA*** This file is version $Revision: 1713 $ * from $Date: 2006-10-16 16:06:28 +0200 (Mon, 16 Oct 2006) $* last change by $Author: grunau $.********************************************************************************/#ifndef GHMM_REESTIMATE_H#define GHMM_REESTIMATE_H#include "sequence.h"#include "model.h"#ifdef __cplusplusextern "C" {#endif/**@name Baum-Welch-Algorithmus *//*@{ (Doc++-Group: reestimate) *//** Baum-Welch-Algorithm for parameter reestimation (training) in a discrete (discrete output functions) HMM. Scaled version for multiple sequences, alpha and beta matrices are allocated with ighmm_cmatrix_stat_alloc New parameters set directly in hmm (no storage of previous values!). For reference see: Rabiner, L.R.: "`A Tutorial on Hidden {Markov} Models and Selected Applications in Speech Recognition"', Proceedings of the IEEE, 77, no 2, 1989, pp 257--285 @return 0/-1 success/error @param mo initial model @param sq training sequences */ int ghmm_dmodel_baum_welch (ghmm_dmodel * mo, ghmm_dseq * sq);/** Just like reestimate_baum_welch, but you can limit the maximum number of steps @return 0/-1 success/error @param mo initial model @param sq training sequences @param max_step maximal number of Baum-Welch steps @param likelihood_delta minimal improvement in likelihood required for carrying on. Relative value to log likelihood */ int ghmm_dmodel_baum_welch_nstep (ghmm_dmodel * mo, ghmm_dseq * sq, int max_step, double likelihood_delta);/** Baum-Welch-Algorithm for parameter reestimation (training) in a StateLabelHMM. Scaled version for multiple sequences, alpha and beta matrices are allocated with ighmm_cmatrix_stat_alloc New parameters set directly in hmm (no storage of previous values!). For reference see: Rabiner, L.R.: "`A Tutorial on Hidden {Markov} Models and Selected Applications in Speech Recognition"', Proceedings of the IEEE, 77, no 2, 1989, pp 257--285 @return 0/-1 success/error @param mo initial model @param sq training sequences */ int ghmm_dmodel_label_baum_welch (ghmm_dmodel * mo, ghmm_dseq * sq);/** Just like reestimate_baum_welch_label, but you can limit the maximum number of steps @return 0/-1 success/error @param mo initial model @param sq training sequences @param max_step maximal number of Baum-Welch steps @param likelihood_delta minimal improvement in likelihood required for carrying on. Relative value to log likelihood */ int ghmm_dmodel_label_baum_welch_nstep (ghmm_dmodel * mo, ghmm_dseq * sq, int max_step, double likelihood_delta);#ifdef __cplusplus}#endif#endif /* GHMM_REESTIMATE_H *//*@} (Doc++-Group: reestimate) */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -