📄 jcdctmgr.pas
字号:
{ Load data into workspace, applying unsigned->signed conversion }
workspaceptr := @workspace[0];
for elemr := 0 to pred(DCTSIZE) do
begin
elemptr := @sample_data^[elemr]^[start_col];
{$ifdef DCTSIZE_IS_8} { unroll the inner loop }
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
{Inc(elemptr); - Value never used }
{$else}
for elemc := pred(DCTSIZE) downto 0 do
begin
workspaceptr^ := GETJSAMPLE(elemptr^) - CENTERJSAMPLE;
Inc(workspaceptr);
Inc(elemptr);
end;
{$endif}
end;
{ Perform the DCT }
do_dct (workspace);
{ Quantize/descale the coefficients, and store into coef_blocks[] }
output_ptr := JCOEFPTR(@coef_blocks^[bi]);
for i := 0 to pred(DCTSIZE2) do
begin
qval := divisors^[i];
temp := workspace[i];
{ Divide the coefficient value by qval, ensuring proper rounding.
Since C does not specify the direction of rounding for negative
quotients, we have to force the dividend positive for portability.
In most files, at least half of the output values will be zero
(at default quantization settings, more like three-quarters...)
so we should ensure that this case is fast. On many machines,
a comparison is enough cheaper than a divide to make a special test
a win. Since both inputs will be nonnegative, we need only test
for a < b to discover whether a/b is 0.
If your machine's division is fast enough, define FAST_DIVIDE. }
if (temp < 0) then
begin
temp := -temp;
Inc(temp, qval shr 1); { for rounding }
{DIVIDE_BY(temp, qval);}
{$ifdef FAST_DIVIDE}
temp := temp div qval;
{$else}
if (temp >= qval) then
temp := temp div qval
else
temp := 0;
{$endif}
temp := -temp;
end
else
begin
Inc(temp, qval shr 1); { for rounding }
{DIVIDE_BY(temp, qval);}
{$ifdef FAST_DIVIDE}
temp := temp div qval;
{$else}
if (temp >= qval) then
temp := temp div qval
else
temp := 0;
{$endif}
end;
output_ptr^[i] := JCOEF (temp);
end;
Inc(start_col, DCTSIZE);
end;
end;
{$ifdef DCT_FLOAT_SUPPORTED}
{METHODDEF}
procedure forward_DCT_float (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
sample_data : JSAMPARRAY;
coef_blocks : JBLOCKROW;
start_row : JDIMENSION;
start_col : JDIMENSION;
num_blocks : JDIMENSION); far;
{ This version is used for floating-point DCT implementations. }
var
{ This routine is heavily used, so it's worth coding it tightly. }
fdct : my_fdct_ptr;
do_dct : float_DCT_method_ptr;
divisors : FAST_FLOAT_FIELD_PTR;
workspace : array[0..DCTSIZE2-1] of FAST_FLOAT; { work area for FDCT subroutine }
bi : JDIMENSION;
var
{register} workspaceptr : FAST_FLOAT_PTR;
{register} elemptr : JSAMPLE_PTR;
{register} elemr : int;
{$ifndef DCTSIZE_IS_8}
var
{register} elemc : int;
{$endif}
var
{register} temp : FAST_FLOAT;
{register} i : int;
{register} output_ptr : JCOEFPTR;
begin
fdct := my_fdct_ptr (cinfo^.fdct);
do_dct := fdct^.do_float_dct;
divisors := fdct^.float_divisors[compptr^.quant_tbl_no];
Inc(JSAMPROW_PTR(sample_data), start_row); { fold in the vertical offset once }
for bi := 0 to pred(num_blocks) do
begin
{ Load data into workspace, applying unsigned->signed conversion }
workspaceptr := @workspace[0];
for elemr := 0 to pred(DCTSIZE) do
begin
elemptr := @(sample_data^[elemr]^[start_col]);
{$ifdef DCTSIZE_IS_8} { unroll the inner loop }
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
Inc(elemptr);
workspaceptr^ := {FAST_FLOAT}(GETJSAMPLE(elemptr^) - CENTERJSAMPLE);
Inc(workspaceptr);
{Inc(elemptr); - value never used }
{$else}
for elemc := pred(DCTSIZE) downto 0 do
begin
workspaceptr^ := {FAST_FLOAT}(
(GETJSAMPLE(elemptr^) - CENTERJSAMPLE) );
Inc(workspaceptr);
Inc(elemptr);
end;
{$endif}
end;
{ Perform the DCT }
do_dct (workspace);
{ Quantize/descale the coefficients, and store into coef_blocks[] }
output_ptr := JCOEFPTR(@(coef_blocks^[bi]));
for i := 0 to pred(DCTSIZE2) do
begin
{ Apply the quantization and scaling factor }
temp := workspace[i] * divisors^[i];
{ Round to nearest integer.
Since C does not specify the direction of rounding for negative
quotients, we have to force the dividend positive for portability.
The maximum coefficient size is +-16K (for 12-bit data), so this
code should work for either 16-bit or 32-bit ints. }
output_ptr^[i] := JCOEF ( int(Round (temp + {FAST_FLOAT}(16384.5))) - 16384);
end;
Inc(start_col, DCTSIZE);
end;
end;
{$endif} { DCT_FLOAT_SUPPORTED }
{ Initialize FDCT manager. }
{GLOBAL}
procedure jinit_forward_dct (cinfo : j_compress_ptr);
var
fdct : my_fdct_ptr;
i : int;
begin
fdct := my_fdct_ptr(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
SIZEOF(my_fdct_controller)) );
cinfo^.fdct := jpeg_forward_dct_ptr (fdct);
fdct^.pub.start_pass := start_pass_fdctmgr;
case (cinfo^.dct_method) of
{$ifdef DCT_ISLOW_SUPPORTED}
JDCT_ISLOW:
begin
fdct^.pub.forward_DCT := forward_DCT;
fdct^.do_dct := jpeg_fdct_islow;
end;
{$endif}
{$ifdef DCT_IFAST_SUPPORTED}
JDCT_IFAST:
begin
fdct^.pub.forward_DCT := forward_DCT;
fdct^.do_dct := jpeg_fdct_ifast;
end;
{$endif}
{$ifdef DCT_FLOAT_SUPPORTED}
JDCT_FLOAT:
begin
fdct^.pub.forward_DCT := forward_DCT_float;
fdct^.do_float_dct := jpeg_fdct_float;
end;
{$endif}
else
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
end;
{ Mark divisor tables unallocated }
for i := 0 to pred(NUM_QUANT_TBLS) do
begin
fdct^.divisors[i] := NIL;
{$ifdef DCT_FLOAT_SUPPORTED}
fdct^.float_divisors[i] := NIL;
{$endif}
end;
end;
end.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -