📄 jcdctmgr.pas
字号:
Unit JcDCTmgr;
{ Original : jcdctmgr.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
{ This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.
This file contains the forward-DCT management logic.
This code selects a particular DCT implementation to be used,
and it performs related housekeeping chores including coefficient
quantization. }
interface
{$N+}
{$I jconfig.inc}
uses
jmorecfg,
jinclude,
jdeferr,
jerror,
jpeglib,
jdct, { Private declarations for DCT subsystem }
jfdctint, jfdctfst, jfdctflt;
{ Initialize FDCT manager. }
{GLOBAL}
procedure jinit_forward_dct (cinfo : j_compress_ptr);
implementation
{ Private subobject for this module }
type
my_fdct_ptr = ^my_fdct_controller;
my_fdct_controller = record
pub : jpeg_forward_dct; { public fields }
{ Pointer to the DCT routine actually in use }
do_dct : forward_DCT_method_ptr;
{ The actual post-DCT divisors --- not identical to the quant table
entries, because of scaling (especially for an unnormalized DCT).
Each table is given in normal array order. }
divisors : array[0..NUM_QUANT_TBLS-1] of DCTELEM_FIELD_PTR;
{$ifdef DCT_FLOAT_SUPPORTED}
{ Same as above for the floating-point case. }
do_float_dct : float_DCT_method_ptr;
float_divisors : array[0..NUM_QUANT_TBLS-1] of FAST_FLOAT_FIELD_PTR;
{$endif}
end;
{ Initialize for a processing pass.
Verify that all referenced Q-tables are present, and set up
the divisor table for each one.
In the current implementation, DCT of all components is done during
the first pass, even if only some components will be output in the
first scan. Hence all components should be examined here. }
{METHODDEF}
procedure start_pass_fdctmgr (cinfo : j_compress_ptr); far;
var
fdct : my_fdct_ptr;
ci, qtblno, i : int;
compptr : jpeg_component_info_ptr;
qtbl : JQUANT_TBL_PTR;
dtbl : DCTELEM_FIELD_PTR;
{$ifdef DCT_IFAST_SUPPORTED}
const
CONST_BITS = 14;
aanscales : array[0..DCTSIZE2-1] of INT16 =
({ precomputed values scaled up by 14 bits }
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247);
{SHIFT_TEMPS}
{ Descale and correctly round an INT32 value that's scaled by N bits.
We assume RIGHT_SHIFT rounds towards minus infinity, so adding
the fudge factor is correct for either sign of X. }
function DESCALE(x : INT32; n : int) : INT32;
var
shift_temp : INT32;
begin
shift_temp := x + (INT32(1) shl (n-1));
{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
if shift_temp < 0 then
Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
else
{$endif}
Descale := (shift_temp shr n);
end;
{$endif}
{$ifdef DCT_FLOAT_SUPPORTED}
var
fdtbl : FAST_FLOAT_FIELD_PTR;
row, col : int;
const
aanscalefactor : array[0..DCTSIZE-1] of double =
(1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379);
{$endif}
begin
fdct := my_fdct_ptr (cinfo^.fdct);
compptr := cinfo^.comp_info;
for ci := 0 to pred(cinfo^.num_components) do
begin
qtblno := compptr^.quant_tbl_no;
{ Make sure specified quantization table is present }
if (qtblno < 0) or (qtblno >= NUM_QUANT_TBLS) or
(cinfo^.quant_tbl_ptrs[qtblno] = NIL) then
ERREXIT1(j_common_ptr(cinfo), JERR_NO_QUANT_TABLE, qtblno);
qtbl := cinfo^.quant_tbl_ptrs[qtblno];
{ Compute divisors for this quant table }
{ We may do this more than once for same table, but it's not a big deal }
case (cinfo^.dct_method) of
{$ifdef DCT_ISLOW_SUPPORTED}
JDCT_ISLOW:
begin
{ For LL&M IDCT method, divisors are equal to raw quantization
coefficients multiplied by 8 (to counteract scaling). }
if (fdct^.divisors[qtblno] = NIL) then
begin
fdct^.divisors[qtblno] := DCTELEM_FIELD_PTR(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM)) );
end;
dtbl := fdct^.divisors[qtblno];
for i := 0 to pred(DCTSIZE2) do
begin
dtbl^[i] := (DCTELEM(qtbl^.quantval[i])) shl 3;
end;
end;
{$endif}
{$ifdef DCT_IFAST_SUPPORTED}
JDCT_IFAST:
begin
{ For AA&N IDCT method, divisors are equal to quantization
coefficients scaled by scalefactor[row]*scalefactor[col], where
scalefactor[0] := 1
scalefactor[k] := cos(k*PI/16) * sqrt(2) for k=1..7
We apply a further scale factor of 8. }
if (fdct^.divisors[qtblno] = NIL) then
begin
fdct^.divisors[qtblno] := DCTELEM_FIELD_PTR(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM)) );
end;
dtbl := fdct^.divisors[qtblno];
for i := 0 to pred(DCTSIZE2) do
begin
dtbl^[i] := DCTELEM(
{MULTIPLY16V16}
DESCALE( INT32(qtbl^.quantval[i]) * INT32 (aanscales[i]),
CONST_BITS-3) );
end;
end;
{$endif}
{$ifdef DCT_FLOAT_SUPPORTED}
JDCT_FLOAT:
begin
{ For float AA&N IDCT method, divisors are equal to quantization
coefficients scaled by scalefactor[row]*scalefactor[col], where
scalefactor[0] := 1
scalefactor[k] := cos(k*PI/16) * sqrt(2) for k=1..7
We apply a further scale factor of 8.
What's actually stored is 1/divisor so that the inner loop can
use a multiplication rather than a division. }
if (fdct^.float_divisors[qtblno] = NIL) then
begin
fdct^.float_divisors[qtblno] := FAST_FLOAT_FIELD_PTR(
cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT)) );
end;
fdtbl := fdct^.float_divisors[qtblno];
i := 0;
for row := 0 to pred(DCTSIZE) do
begin
for col := 0 to pred(DCTSIZE) do
begin
fdtbl^[i] := {FAST_FLOAT}
(1.0 / (( {double}(qtbl^.quantval[i]) *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
Inc(i);
end;
end;
end;
{$endif}
else
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
end;
Inc(compptr);
end;
end;
{ Perform forward DCT on one or more blocks of a component.
The input samples are taken from the sample_data[] array starting at
position start_row/start_col, and moving to the right for any additional
blocks. The quantized coefficients are returned in coef_blocks[]. }
{METHODDEF}
procedure forward_DCT (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
sample_data : JSAMPARRAY;
coef_blocks : JBLOCKROW;
start_row : JDIMENSION;
start_col : JDIMENSION;
num_blocks : JDIMENSION); far;
{ This version is used for integer DCT implementations. }
var
{ This routine is heavily used, so it's worth coding it tightly. }
fdct : my_fdct_ptr;
do_dct : forward_DCT_method_ptr;
divisors : DCTELEM_FIELD_PTR;
workspace : array[0..DCTSIZE2-1] of DCTELEM; { work area for FDCT subroutine }
bi : JDIMENSION;
var
{register} workspaceptr : DCTELEMPTR;
{register} elemptr : JSAMPLE_PTR;
{register} elemr : int;
{$ifndef DCTSIZE_IS_8}
var
{register} elemc : int;
{$endif}
var
{register} temp, qval : DCTELEM;
{register} i : int;
{register} output_ptr : JCOEFPTR;
begin
fdct := my_fdct_ptr (cinfo^.fdct);
do_dct := fdct^.do_dct;
divisors := fdct^.divisors[compptr^.quant_tbl_no];
Inc(JSAMPROW_PTR(sample_data), start_row); { fold in the vertical offset once }
for bi := 0 to pred(num_blocks) do
begin
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -