⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dequantizer.java

📁 jpeg2000编解码
💻 JAVA
字号:
/* * CVS identifier: * * $Id: Dequantizer.java,v 1.1.1.1 2002/07/22 09:26:52 grosbois Exp $ * * Class:                   Dequantizer * * Description:             The abstract class for all dequantizers. * * * * COPYRIGHT: *  * This software module was originally developed by Rapha雔 Grosbois and * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel * Askel鰂 (Ericsson Radio Systems AB); and Bertrand Berthelot, David * Bouchard, F閘ix Henry, Gerard Mozelle and Patrice Onno (Canon Research * Centre France S.A) in the course of development of the JPEG2000 * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This * software module is an implementation of a part of the JPEG 2000 * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio * Systems AB and Canon Research Centre France S.A (collectively JJ2000 * Partners) agree not to assert against ISO/IEC and users of the JPEG * 2000 Standard (Users) any of their rights under the copyright, not * including other intellectual property rights, for this software module * with respect to the usage by ISO/IEC and Users of this software module * or modifications thereof for use in hardware or software products * claiming conformance to the JPEG 2000 Standard. Those intending to use * this software module in hardware or software products are advised that * their use may infringe existing patents. The original developers of * this software module, JJ2000 Partners and ISO/IEC assume no liability * for use of this software module or modifications thereof. No license * or right to this software module is granted for non JPEG 2000 Standard * conforming products. JJ2000 Partners have full right to use this * software module for his/her own purpose, assign or donate this * software module to any third party and to inhibit third parties from * using this software module for non JPEG 2000 Standard conforming * products. This copyright notice must be included in all copies or * derivative works of this software module. *  * Copyright (c) 1999/2000 JJ2000 Partners. * */package jj2000.j2k.quantization.dequantizer;import jj2000.j2k.image.invcomptransf.*;import jj2000.j2k.wavelet.synthesis.*;import jj2000.j2k.entropy.decoder.*;import jj2000.j2k.codestream.*;import jj2000.j2k.entropy.*;import jj2000.j2k.decoder.*;import jj2000.j2k.wavelet.*;import jj2000.j2k.image.*;import jj2000.j2k.io.*;import jj2000.j2k.*;import java.io.*;/** * This is the abstract class from which all dequantizers must inherit. This * class has the concept of a current tile and all operations are performed on * the current tile. * * <p>This class provides default implemenations for most of the methods * (wherever it makes sense), under the assumption that the image and * component dimensions, and the tiles, are not modifed by the dequantizer. If * that is not the case for a particular implementation then the methods * should be overriden.</p> * * <p>Sign magnitude representation is used (instead of two's complement) for * the input data. The most significant bit is used for the sign (0 if * positive, 1 if negative). Then the magnitude of the quantized coefficient * is stored in the next most significat bits. The most significant magnitude * bit corresponds to the most significant bit-plane and so on.</p> * * <p>The output data is either in floating-point, or in fixed-point two's * complement. In case of floating-point data the the value returned by * getFixedPoint() must be 0. If the case of fixed-point data the number of * fractional bits must be defined at the constructor of the implementing * class and all operations must be performed accordingly. Each component may * have a different number of fractional bits.</p> * */public abstract class Dequantizer extends MultiResImgDataAdapter    implements CBlkWTDataSrcDec {    /** The prefix for dequantizer options: 'Q' */    public final static char OPT_PREFIX = 'Q';    /** The list of parameters that is accepted by the bit stream     * readers. They start with 'Q' */    private static final String [][] pinfo = null;    /** The entropy decoder from where to get the quantized data (the     * source). */    protected CBlkQuantDataSrcDec src;    /** The "range bits" for each transformed component */    protected int rb[] = null;    /** The "range bits" for each un-transformed component */    protected int utrb[] = null;    /** The inverse component transformation specifications */    private CompTransfSpec cts;    /** Reference to the wavelet filter specifications */    private SynWTFilterSpec wfs;    /**     * Initializes the source of compressed data.     *     * @param src From where to obtain the quantized data.     *     * @param rb The number of "range bits" for each component (must be the     * "range bits" of the un-transformed components. For a definition of     * "range bits" see the getNomRangeBits() method.     *     * @see #getNomRangeBits     * */    public Dequantizer(CBlkQuantDataSrcDec src,int utrb[],                       DecoderSpecs decSpec) {        super(src);        if (utrb.length != src.getNumComps()) {            throw new IllegalArgumentException();        }        this.src  = src;        this.utrb = utrb;        this.cts  = decSpec.cts;        this.wfs  = decSpec.wfs;    }    /**     * Returns the number of bits, referred to as the "range bits",     * corresponding to the nominal range of the data in the specified     * component.     *     * <p>The returned value corresponds to the nominal dynamic range of the     * reconstructed image data, not of the wavelet coefficients     * themselves. This is because different subbands have different gains and     * thus different nominal ranges. To have an idea of the nominal range in     * each subband the subband analysis gain value from the subband tree     * structure, returned by the getSynSubbandTree() method, can be used. See     * the Subband class for more details.</p>     *     * <p>If this number is <i>b</b> then for unsigned data the nominal range     * is between 0 and 2^b-1, and for signed data it is between -2^(b-1) and     * 2^(b-1)-1.</p>     *     * @param c The index of the component     *     * @return The number of bits corresponding to the nominal range of the     * data.     *     * @see Subband     * */    public int getNomRangeBits(int c) {        return rb[c];    }    /**     * Returns the subband tree, for the specified tile-component. This method     * returns the root element of the subband tree structure, see Subband and     * SubbandSyn. The tree comprises all the available resolution levels.     *     * <P>The number of magnitude bits ('magBits' member variable) for each     * subband may have not been not initialized (it depends on the actual     * dequantizer and its implementation). However, they are not necessary     * for the subsequent steps in the decoder chain.     *     * @param t The index of the tile, from 0 to T-1.     *     * @param c The index of the component, from 0 to C-1.     *     * @return The root of the tree structure.     * */    public SubbandSyn getSynSubbandTree(int t,int c) {        return src.getSynSubbandTree(t,c);    }    /**     * Returns the horizontal code-block partition origin. Allowable values     * are 0 and 1, nothing else.     * */    public int getCbULX() {        return src.getCbULX();    }    /**     * Returns the vertical code-block partition origin. Allowable values are     * 0 and 1, nothing else.     * */    public int getCbULY() {        return src.getCbULY();    }    /**     * Returns the parameters that are used in this class and     * implementing classes. It returns a 2D String array. Each of the     * 1D arrays is for a different option, and they have 3     * elements. The first element is the option name, the second one     * is the synopsis and the third one is a long description of what     * the parameter is. The synopsis or description may be 'null', in     * which case it is assumed that there is no synopsis or     * description of the option, respectively. Null may be returned     * if no options are supported.     *     * @return the options name, their synopsis and their explanation,      * or null if no options are supported.     * */    public static String[][] getParameterInfo() {        return pinfo;    }    /**     * Changes the current tile, given the new indexes. An     * IllegalArgumentException is thrown if the indexes do not     * correspond to a valid tile.     *     * <P>This default implementation changes the tile in the source     * and re-initializes properly component transformation variables..     *     * @param x The horizontal index of the tile.     *     * @param y The vertical index of the new tile.     * */    public void setTile(int x, int y) {        src.setTile(x,y);	tIdx = getTileIdx(); // index of the current tile        // initializations        int cttype = 0;        if( ((Integer)cts.getTileDef(tIdx)).intValue()==InvCompTransf.NONE )            cttype = InvCompTransf.NONE;        else {            int nc = src.getNumComps() > 3 ? 3 : src.getNumComps();             int rev = 0;            for(int c=0; c<nc; c++)                rev += (wfs.isReversible(tIdx,c)?1:0);            if(rev==3){                // All WT are reversible                cttype = InvCompTransf.INV_RCT;            }            else if(rev==0){                // All WT irreversible                cttype = InvCompTransf.INV_ICT;            }            else{                // Error                throw new IllegalArgumentException("Wavelet transformation "+                                                   "and "+                                                   "component transformation"+                                                   " not coherent in tile"+                                                   tIdx);            }        }        switch(cttype){        case InvCompTransf.NONE:            rb = utrb;            break;        case InvCompTransf.INV_RCT:            rb = InvCompTransf.                calcMixedBitDepths(utrb,InvCompTransf.INV_RCT,null);            break;        case InvCompTransf.INV_ICT:            rb = InvCompTransf.                calcMixedBitDepths(utrb,InvCompTransf.INV_ICT,null);            break;        default:            throw new IllegalArgumentException("Non JPEG 2000 part I "+                                               "component"+                                               " transformation for tile: "+                                               tIdx);        }    }    /**     * Advances to the next tile, in standard scan-line order (by rows then     * columns). An NoNextElementException is thrown if the current tile is     * the last one (i.e. there is no next tile).     *     * <P>This default implementation just advances to the next tile in the     * source and re-initializes properly component transformation variables.     * */    public void nextTile() {        src.nextTile();	tIdx = getTileIdx(); // index of the current tile        // initializations        int cttype = ((Integer)cts.getTileDef(tIdx)).intValue();        switch(cttype){        case InvCompTransf.NONE:            rb = utrb;            break;        case InvCompTransf.INV_RCT:            rb = InvCompTransf.                calcMixedBitDepths(utrb,InvCompTransf.INV_RCT,null);            break;        case InvCompTransf.INV_ICT:            rb = InvCompTransf.                calcMixedBitDepths(utrb,InvCompTransf.INV_ICT,null);            break;        default:            throw new IllegalArgumentException("Non JPEG 2000 part I "+                                               "component"+                                               " transformation for tile: "+                                               tIdx);        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -