📄 std_2c35.vhd
字号:
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then d1_button_pio_s1_end_xfer <= button_pio_s1_end_xfer; end if; end if; end process; --button_pio_s1_waits_for_read in a cycle, which is an e_mux button_pio_s1_waits_for_read <= button_pio_s1_in_a_read_cycle AND button_pio_s1_begins_xfer; --button_pio_s1_in_a_read_cycle assignment, which is an e_assign button_pio_s1_in_a_read_cycle <= internal_cpu_data_master_granted_button_pio_s1 AND cpu_data_master_read; --in_a_read_cycle assignment, which is an e_mux in_a_read_cycle <= button_pio_s1_in_a_read_cycle; --button_pio_s1_waits_for_write in a cycle, which is an e_mux button_pio_s1_waits_for_write <= Vector_To_Std_Logic(((std_logic_vector'("0000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(button_pio_s1_in_a_write_cycle))) AND std_logic_vector'("00000000000000000000000000000000"))); --button_pio_s1_in_a_write_cycle assignment, which is an e_assign button_pio_s1_in_a_write_cycle <= internal_cpu_data_master_granted_button_pio_s1 AND cpu_data_master_write; --in_a_write_cycle assignment, which is an e_mux in_a_write_cycle <= button_pio_s1_in_a_write_cycle; wait_for_button_pio_s1_counter <= std_logic'('0'); --assign button_pio_s1_irq_from_sa = button_pio_s1_irq so that symbol knows where to group signals which may go to master only, which is an e_assign button_pio_s1_irq_from_sa <= button_pio_s1_irq; --vhdl renameroo for output signals cpu_data_master_granted_button_pio_s1 <= internal_cpu_data_master_granted_button_pio_s1; --vhdl renameroo for output signals cpu_data_master_qualified_request_button_pio_s1 <= internal_cpu_data_master_qualified_request_button_pio_s1; --vhdl renameroo for output signals cpu_data_master_requests_button_pio_s1 <= internal_cpu_data_master_requests_button_pio_s1;end europa;-- turn off superfluous VHDL processor warnings -- altera message_level Level1 -- altera message_off 10034 10035 10036 10037 10230 10240 10030 library altera;use altera.altera_europa_support_lib.all;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity clock_0_in_arbitrator is port ( -- inputs: signal clk : IN STD_LOGIC; signal clock_0_in_endofpacket : IN STD_LOGIC; signal clock_0_in_readdata : IN STD_LOGIC_VECTOR (15 DOWNTO 0); signal clock_0_in_waitrequest : IN STD_LOGIC; signal cpu_data_master_address_to_slave : IN STD_LOGIC_VECTOR (26 DOWNTO 0); signal cpu_data_master_byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO 0); signal cpu_data_master_read : IN STD_LOGIC; signal cpu_data_master_waitrequest : IN STD_LOGIC; signal cpu_data_master_write : IN STD_LOGIC; signal cpu_data_master_writedata : IN STD_LOGIC_VECTOR (31 DOWNTO 0); signal reset_n : IN STD_LOGIC; -- outputs: signal clock_0_in_address : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); signal clock_0_in_byteenable : OUT STD_LOGIC_VECTOR (1 DOWNTO 0); signal clock_0_in_endofpacket_from_sa : OUT STD_LOGIC; signal clock_0_in_nativeaddress : OUT STD_LOGIC_VECTOR (2 DOWNTO 0); signal clock_0_in_read : OUT STD_LOGIC; signal clock_0_in_readdata_from_sa : OUT STD_LOGIC_VECTOR (15 DOWNTO 0); signal clock_0_in_reset_n : OUT STD_LOGIC; signal clock_0_in_waitrequest_from_sa : OUT STD_LOGIC; signal clock_0_in_write : OUT STD_LOGIC; signal clock_0_in_writedata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0); signal cpu_data_master_granted_clock_0_in : OUT STD_LOGIC; signal cpu_data_master_qualified_request_clock_0_in : OUT STD_LOGIC; signal cpu_data_master_read_data_valid_clock_0_in : OUT STD_LOGIC; signal cpu_data_master_requests_clock_0_in : OUT STD_LOGIC; signal d1_clock_0_in_end_xfer : OUT STD_LOGIC );attribute auto_dissolve : boolean;attribute auto_dissolve of clock_0_in_arbitrator : entity is FALSE;end entity clock_0_in_arbitrator;architecture europa of clock_0_in_arbitrator is signal clock_0_in_allgrants : STD_LOGIC; signal clock_0_in_allow_new_arb_cycle : STD_LOGIC; signal clock_0_in_any_bursting_master_saved_grant : STD_LOGIC; signal clock_0_in_any_continuerequest : STD_LOGIC; signal clock_0_in_arb_counter_enable : STD_LOGIC; signal clock_0_in_arb_share_counter : STD_LOGIC_VECTOR (2 DOWNTO 0); signal clock_0_in_arb_share_counter_next_value : STD_LOGIC_VECTOR (2 DOWNTO 0); signal clock_0_in_arb_share_set_values : STD_LOGIC_VECTOR (2 DOWNTO 0); signal clock_0_in_beginbursttransfer_internal : STD_LOGIC; signal clock_0_in_begins_xfer : STD_LOGIC; signal clock_0_in_end_xfer : STD_LOGIC; signal clock_0_in_firsttransfer : STD_LOGIC; signal clock_0_in_grant_vector : STD_LOGIC; signal clock_0_in_in_a_read_cycle : STD_LOGIC; signal clock_0_in_in_a_write_cycle : STD_LOGIC; signal clock_0_in_master_qreq_vector : STD_LOGIC; signal clock_0_in_non_bursting_master_requests : STD_LOGIC; signal clock_0_in_slavearbiterlockenable : STD_LOGIC; signal clock_0_in_slavearbiterlockenable2 : STD_LOGIC; signal clock_0_in_waits_for_read : STD_LOGIC; signal clock_0_in_waits_for_write : STD_LOGIC; signal cpu_data_master_arbiterlock : STD_LOGIC; signal cpu_data_master_arbiterlock2 : STD_LOGIC; signal cpu_data_master_continuerequest : STD_LOGIC; signal cpu_data_master_saved_grant_clock_0_in : STD_LOGIC; signal d1_reasons_to_wait : STD_LOGIC; signal end_xfer_arb_share_counter_term_clock_0_in : STD_LOGIC; signal in_a_read_cycle : STD_LOGIC; signal in_a_write_cycle : STD_LOGIC; signal internal_clock_0_in_waitrequest_from_sa : STD_LOGIC; signal internal_cpu_data_master_granted_clock_0_in : STD_LOGIC; signal internal_cpu_data_master_qualified_request_clock_0_in : STD_LOGIC; signal internal_cpu_data_master_requests_clock_0_in : STD_LOGIC; signal shifted_address_to_clock_0_in_from_cpu_data_master : STD_LOGIC_VECTOR (26 DOWNTO 0); signal wait_for_clock_0_in_counter : STD_LOGIC;begin process (clk, reset_n) begin if reset_n = '0' then d1_reasons_to_wait <= std_logic'('0'); elsif clk'event and clk = '1' then if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then d1_reasons_to_wait <= NOT clock_0_in_end_xfer; end if; end if; end process; clock_0_in_begins_xfer <= NOT d1_reasons_to_wait AND (internal_cpu_data_master_qualified_request_clock_0_in); --assign clock_0_in_readdata_from_sa = clock_0_in_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign clock_0_in_readdata_from_sa <= clock_0_in_readdata; internal_cpu_data_master_requests_clock_0_in <= to_std_logic(((Std_Logic_Vector'(cpu_data_master_address_to_slave(26 DOWNTO 5) & std_logic_vector'("00000")) = std_logic_vector'("001000000000000000000100000")))) AND ((cpu_data_master_read OR cpu_data_master_write)); --assign clock_0_in_waitrequest_from_sa = clock_0_in_waitrequest so that symbol knows where to group signals which may go to master only, which is an e_assign internal_clock_0_in_waitrequest_from_sa <= clock_0_in_waitrequest; --clock_0_in_arb_share_counter set values, which is an e_mux clock_0_in_arb_share_set_values <= std_logic_vector'("001"); --clock_0_in_non_bursting_master_requests mux, which is an e_mux clock_0_in_non_bursting_master_requests <= internal_cpu_data_master_requests_clock_0_in; --clock_0_in_any_bursting_master_saved_grant mux, which is an e_mux clock_0_in_any_bursting_master_saved_grant <= std_logic'('0'); --clock_0_in_arb_share_counter_next_value assignment, which is an e_assign clock_0_in_arb_share_counter_next_value <= A_EXT (A_WE_StdLogicVector((std_logic'(clock_0_in_firsttransfer) = '1'), (((std_logic_vector'("000000000000000000000000000000") & (clock_0_in_arb_share_set_values)) - std_logic_vector'("000000000000000000000000000000001"))), A_WE_StdLogicVector((std_logic'(or_reduce(clock_0_in_arb_share_counter)) = '1'), (((std_logic_vector'("000000000000000000000000000000") & (clock_0_in_arb_share_counter)) - std_logic_vector'("000000000000000000000000000000001"))), std_logic_vector'("000000000000000000000000000000000"))), 3); --clock_0_in_allgrants all slave grants, which is an e_mux clock_0_in_allgrants <= clock_0_in_grant_vector; --clock_0_in_end_xfer assignment, which is an e_assign clock_0_in_end_xfer <= NOT ((clock_0_in_waits_for_read OR clock_0_in_waits_for_write)); --end_xfer_arb_share_counter_term_clock_0_in arb share counter enable term, which is an e_assign end_xfer_arb_share_counter_term_clock_0_in <= clock_0_in_end_xfer AND (((NOT clock_0_in_any_bursting_master_saved_grant OR in_a_read_cycle) OR in_a_write_cycle)); --clock_0_in_arb_share_counter arbitration counter enable, which is an e_assign clock_0_in_arb_counter_enable <= ((end_xfer_arb_share_counter_term_clock_0_in AND clock_0_in_allgrants)) OR ((end_xfer_arb_share_counter_term_clock_0_in AND NOT clock_0_in_non_bursting_master_requests)); --clock_0_in_arb_share_counter counter, which is an e_register process (clk, reset_n) begin if reset_n = '0' then clock_0_in_arb_share_counter <= std_logic_vector'("000"); elsif clk'event and clk = '1' then if std_logic'(clock_0_in_arb_counter_enable) = '1' then clock_0_in_arb_share_counter <= clock_0_in_arb_share_counter_next_value; end if; end if; end process; --clock_0_in_slavearbiterlockenable slave enables arbiterlock, which is an e_register process (clk, reset_n) begin if reset_n = '0' then clock_0_in_slavearbiterlockenable <= std_logic'('0'); elsif clk'event and clk = '1' then if std_logic'((((clock_0_in_master_qreq_vector AND end_xfer_arb_share_counter_term_clock_0_in)) OR ((end_xfer_arb_share_counter_term_clock_0_in AND NOT clock_0_in_non_bursting_master_requests)))) = '1' then clock_0_in_slavearbiterlockenable <= or_reduce(clock_0_in_arb_share_counter_next_value); end if; end if; end process; --cpu/data_master clock_0/in arbiterlock, which is an e_assign cpu_data_master_arbiterlock <= clock_0_in_slavearbiterlockenable AND cpu_data_master_continuerequest; --clock_0_in_slavearbiterlockenable2 slave enables arbiterlock2, which is an e_assign clock_0_in_slavearbiterlockenable2 <= or_reduce(clock_0_in_arb_share_counter_next_value); --cpu/data_master clock_0/in arbiterlock2, which is an e_assign cpu_data_master_arbiterlock2 <= clock_0_in_slavearbiterlockenable2 AND cpu_data_master_continuerequest; --clock_0_in_any_continuerequest at least one master continues requesting, which is an e_assign clock_0_in_any_continuerequest <= std_logic'('1'); --cpu_data_master_continuerequest continued request, which is an e_assign cpu_data_master_continuerequest <= std_logic'('1'); internal_cpu_data_master_qualified_request_clock_0_in <= internal_cpu_data_master_requests_clock_0_in AND NOT ((((cpu_data_master_read AND (NOT cpu_data_master_waitrequest))) OR (((NOT cpu_data_master_waitrequest) AND cpu_data_master_write)))); --clock_0_in_writedata mux, which is an e_mux clock_0_in_writedata <= cpu_data_master_writedata (15 DOWNTO 0); --assign clock_0_in_endofpacket_from_sa = clock_0_in_endofpacket so that symbol knows where to group signals which may go to master only, which is an e_assign clock_0_in_endofpacket_from_sa <= clock_0_in_endofpacket; --master is always granted when requested internal_cpu_data_master_granted_clock_0_in <= internal_cpu_data_master_qualified_request_clock_0_in; --cpu/data_master saved-grant clock_0/in, which is an e_assign
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -