⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 std_2c35.vhd

📁 nois 2cpu 硬件实现编程
💻 VHD
📖 第 1 页 / 共 5 页
字号:
      if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then         d1_button_pio_s1_end_xfer <= button_pio_s1_end_xfer;      end if;    end if;  end process;  --button_pio_s1_waits_for_read in a cycle, which is an e_mux  button_pio_s1_waits_for_read <= button_pio_s1_in_a_read_cycle AND button_pio_s1_begins_xfer;  --button_pio_s1_in_a_read_cycle assignment, which is an e_assign  button_pio_s1_in_a_read_cycle <= internal_cpu_data_master_granted_button_pio_s1 AND cpu_data_master_read;  --in_a_read_cycle assignment, which is an e_mux  in_a_read_cycle <= button_pio_s1_in_a_read_cycle;  --button_pio_s1_waits_for_write in a cycle, which is an e_mux  button_pio_s1_waits_for_write <= Vector_To_Std_Logic(((std_logic_vector'("0000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(button_pio_s1_in_a_write_cycle))) AND std_logic_vector'("00000000000000000000000000000000")));  --button_pio_s1_in_a_write_cycle assignment, which is an e_assign  button_pio_s1_in_a_write_cycle <= internal_cpu_data_master_granted_button_pio_s1 AND cpu_data_master_write;  --in_a_write_cycle assignment, which is an e_mux  in_a_write_cycle <= button_pio_s1_in_a_write_cycle;  wait_for_button_pio_s1_counter <= std_logic'('0');  --assign button_pio_s1_irq_from_sa = button_pio_s1_irq so that symbol knows where to group signals which may go to master only, which is an e_assign  button_pio_s1_irq_from_sa <= button_pio_s1_irq;  --vhdl renameroo for output signals  cpu_data_master_granted_button_pio_s1 <= internal_cpu_data_master_granted_button_pio_s1;  --vhdl renameroo for output signals  cpu_data_master_qualified_request_button_pio_s1 <= internal_cpu_data_master_qualified_request_button_pio_s1;  --vhdl renameroo for output signals  cpu_data_master_requests_button_pio_s1 <= internal_cpu_data_master_requests_button_pio_s1;end europa;-- turn off superfluous VHDL processor warnings -- altera message_level Level1 -- altera message_off 10034 10035 10036 10037 10230 10240 10030 library altera;use altera.altera_europa_support_lib.all;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity clock_0_in_arbitrator is         port (              -- inputs:                 signal clk : IN STD_LOGIC;                 signal clock_0_in_endofpacket : IN STD_LOGIC;                 signal clock_0_in_readdata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);                 signal clock_0_in_waitrequest : IN STD_LOGIC;                 signal cpu_data_master_address_to_slave : IN STD_LOGIC_VECTOR (26 DOWNTO 0);                 signal cpu_data_master_byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO 0);                 signal cpu_data_master_read : IN STD_LOGIC;                 signal cpu_data_master_waitrequest : IN STD_LOGIC;                 signal cpu_data_master_write : IN STD_LOGIC;                 signal cpu_data_master_writedata : IN STD_LOGIC_VECTOR (31 DOWNTO 0);                 signal reset_n : IN STD_LOGIC;              -- outputs:                 signal clock_0_in_address : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);                 signal clock_0_in_byteenable : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);                 signal clock_0_in_endofpacket_from_sa : OUT STD_LOGIC;                 signal clock_0_in_nativeaddress : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);                 signal clock_0_in_read : OUT STD_LOGIC;                 signal clock_0_in_readdata_from_sa : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);                 signal clock_0_in_reset_n : OUT STD_LOGIC;                 signal clock_0_in_waitrequest_from_sa : OUT STD_LOGIC;                 signal clock_0_in_write : OUT STD_LOGIC;                 signal clock_0_in_writedata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);                 signal cpu_data_master_granted_clock_0_in : OUT STD_LOGIC;                 signal cpu_data_master_qualified_request_clock_0_in : OUT STD_LOGIC;                 signal cpu_data_master_read_data_valid_clock_0_in : OUT STD_LOGIC;                 signal cpu_data_master_requests_clock_0_in : OUT STD_LOGIC;                 signal d1_clock_0_in_end_xfer : OUT STD_LOGIC              );attribute auto_dissolve : boolean;attribute auto_dissolve of clock_0_in_arbitrator : entity is FALSE;end entity clock_0_in_arbitrator;architecture europa of clock_0_in_arbitrator is                signal clock_0_in_allgrants :  STD_LOGIC;                signal clock_0_in_allow_new_arb_cycle :  STD_LOGIC;                signal clock_0_in_any_bursting_master_saved_grant :  STD_LOGIC;                signal clock_0_in_any_continuerequest :  STD_LOGIC;                signal clock_0_in_arb_counter_enable :  STD_LOGIC;                signal clock_0_in_arb_share_counter :  STD_LOGIC_VECTOR (2 DOWNTO 0);                signal clock_0_in_arb_share_counter_next_value :  STD_LOGIC_VECTOR (2 DOWNTO 0);                signal clock_0_in_arb_share_set_values :  STD_LOGIC_VECTOR (2 DOWNTO 0);                signal clock_0_in_beginbursttransfer_internal :  STD_LOGIC;                signal clock_0_in_begins_xfer :  STD_LOGIC;                signal clock_0_in_end_xfer :  STD_LOGIC;                signal clock_0_in_firsttransfer :  STD_LOGIC;                signal clock_0_in_grant_vector :  STD_LOGIC;                signal clock_0_in_in_a_read_cycle :  STD_LOGIC;                signal clock_0_in_in_a_write_cycle :  STD_LOGIC;                signal clock_0_in_master_qreq_vector :  STD_LOGIC;                signal clock_0_in_non_bursting_master_requests :  STD_LOGIC;                signal clock_0_in_slavearbiterlockenable :  STD_LOGIC;                signal clock_0_in_slavearbiterlockenable2 :  STD_LOGIC;                signal clock_0_in_waits_for_read :  STD_LOGIC;                signal clock_0_in_waits_for_write :  STD_LOGIC;                signal cpu_data_master_arbiterlock :  STD_LOGIC;                signal cpu_data_master_arbiterlock2 :  STD_LOGIC;                signal cpu_data_master_continuerequest :  STD_LOGIC;                signal cpu_data_master_saved_grant_clock_0_in :  STD_LOGIC;                signal d1_reasons_to_wait :  STD_LOGIC;                signal end_xfer_arb_share_counter_term_clock_0_in :  STD_LOGIC;                signal in_a_read_cycle :  STD_LOGIC;                signal in_a_write_cycle :  STD_LOGIC;                signal internal_clock_0_in_waitrequest_from_sa :  STD_LOGIC;                signal internal_cpu_data_master_granted_clock_0_in :  STD_LOGIC;                signal internal_cpu_data_master_qualified_request_clock_0_in :  STD_LOGIC;                signal internal_cpu_data_master_requests_clock_0_in :  STD_LOGIC;                signal shifted_address_to_clock_0_in_from_cpu_data_master :  STD_LOGIC_VECTOR (26 DOWNTO 0);                signal wait_for_clock_0_in_counter :  STD_LOGIC;begin  process (clk, reset_n)  begin    if reset_n = '0' then      d1_reasons_to_wait <= std_logic'('0');    elsif clk'event and clk = '1' then      if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then         d1_reasons_to_wait <= NOT clock_0_in_end_xfer;      end if;    end if;  end process;  clock_0_in_begins_xfer <= NOT d1_reasons_to_wait AND (internal_cpu_data_master_qualified_request_clock_0_in);  --assign clock_0_in_readdata_from_sa = clock_0_in_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign  clock_0_in_readdata_from_sa <= clock_0_in_readdata;  internal_cpu_data_master_requests_clock_0_in <= to_std_logic(((Std_Logic_Vector'(cpu_data_master_address_to_slave(26 DOWNTO 5) & std_logic_vector'("00000")) = std_logic_vector'("001000000000000000000100000")))) AND ((cpu_data_master_read OR cpu_data_master_write));  --assign clock_0_in_waitrequest_from_sa = clock_0_in_waitrequest so that symbol knows where to group signals which may go to master only, which is an e_assign  internal_clock_0_in_waitrequest_from_sa <= clock_0_in_waitrequest;  --clock_0_in_arb_share_counter set values, which is an e_mux  clock_0_in_arb_share_set_values <= std_logic_vector'("001");  --clock_0_in_non_bursting_master_requests mux, which is an e_mux  clock_0_in_non_bursting_master_requests <= internal_cpu_data_master_requests_clock_0_in;  --clock_0_in_any_bursting_master_saved_grant mux, which is an e_mux  clock_0_in_any_bursting_master_saved_grant <= std_logic'('0');  --clock_0_in_arb_share_counter_next_value assignment, which is an e_assign  clock_0_in_arb_share_counter_next_value <= A_EXT (A_WE_StdLogicVector((std_logic'(clock_0_in_firsttransfer) = '1'), (((std_logic_vector'("000000000000000000000000000000") & (clock_0_in_arb_share_set_values)) - std_logic_vector'("000000000000000000000000000000001"))), A_WE_StdLogicVector((std_logic'(or_reduce(clock_0_in_arb_share_counter)) = '1'), (((std_logic_vector'("000000000000000000000000000000") & (clock_0_in_arb_share_counter)) - std_logic_vector'("000000000000000000000000000000001"))), std_logic_vector'("000000000000000000000000000000000"))), 3);  --clock_0_in_allgrants all slave grants, which is an e_mux  clock_0_in_allgrants <= clock_0_in_grant_vector;  --clock_0_in_end_xfer assignment, which is an e_assign  clock_0_in_end_xfer <= NOT ((clock_0_in_waits_for_read OR clock_0_in_waits_for_write));  --end_xfer_arb_share_counter_term_clock_0_in arb share counter enable term, which is an e_assign  end_xfer_arb_share_counter_term_clock_0_in <= clock_0_in_end_xfer AND (((NOT clock_0_in_any_bursting_master_saved_grant OR in_a_read_cycle) OR in_a_write_cycle));  --clock_0_in_arb_share_counter arbitration counter enable, which is an e_assign  clock_0_in_arb_counter_enable <= ((end_xfer_arb_share_counter_term_clock_0_in AND clock_0_in_allgrants)) OR ((end_xfer_arb_share_counter_term_clock_0_in AND NOT clock_0_in_non_bursting_master_requests));  --clock_0_in_arb_share_counter counter, which is an e_register  process (clk, reset_n)  begin    if reset_n = '0' then      clock_0_in_arb_share_counter <= std_logic_vector'("000");    elsif clk'event and clk = '1' then      if std_logic'(clock_0_in_arb_counter_enable) = '1' then         clock_0_in_arb_share_counter <= clock_0_in_arb_share_counter_next_value;      end if;    end if;  end process;  --clock_0_in_slavearbiterlockenable slave enables arbiterlock, which is an e_register  process (clk, reset_n)  begin    if reset_n = '0' then      clock_0_in_slavearbiterlockenable <= std_logic'('0');    elsif clk'event and clk = '1' then      if std_logic'((((clock_0_in_master_qreq_vector AND end_xfer_arb_share_counter_term_clock_0_in)) OR ((end_xfer_arb_share_counter_term_clock_0_in AND NOT clock_0_in_non_bursting_master_requests)))) = '1' then         clock_0_in_slavearbiterlockenable <= or_reduce(clock_0_in_arb_share_counter_next_value);      end if;    end if;  end process;  --cpu/data_master clock_0/in arbiterlock, which is an e_assign  cpu_data_master_arbiterlock <= clock_0_in_slavearbiterlockenable AND cpu_data_master_continuerequest;  --clock_0_in_slavearbiterlockenable2 slave enables arbiterlock2, which is an e_assign  clock_0_in_slavearbiterlockenable2 <= or_reduce(clock_0_in_arb_share_counter_next_value);  --cpu/data_master clock_0/in arbiterlock2, which is an e_assign  cpu_data_master_arbiterlock2 <= clock_0_in_slavearbiterlockenable2 AND cpu_data_master_continuerequest;  --clock_0_in_any_continuerequest at least one master continues requesting, which is an e_assign  clock_0_in_any_continuerequest <= std_logic'('1');  --cpu_data_master_continuerequest continued request, which is an e_assign  cpu_data_master_continuerequest <= std_logic'('1');  internal_cpu_data_master_qualified_request_clock_0_in <= internal_cpu_data_master_requests_clock_0_in AND NOT ((((cpu_data_master_read AND (NOT cpu_data_master_waitrequest))) OR (((NOT cpu_data_master_waitrequest) AND cpu_data_master_write))));  --clock_0_in_writedata mux, which is an e_mux  clock_0_in_writedata <= cpu_data_master_writedata (15 DOWNTO 0);  --assign clock_0_in_endofpacket_from_sa = clock_0_in_endofpacket so that symbol knows where to group signals which may go to master only, which is an e_assign  clock_0_in_endofpacket_from_sa <= clock_0_in_endofpacket;  --master is always granted when requested  internal_cpu_data_master_granted_clock_0_in <= internal_cpu_data_master_qualified_request_clock_0_in;  --cpu/data_master saved-grant clock_0/in, which is an e_assign

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -