⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nmf_cjlin.m

📁 非负矩阵分解的matlab代码
💻 M
字号:
function [W,H] = nmf_cjlin(V,Winit,Hinit,tol,timelimit,maxiter)
% 
% Copyright (c) 2005-2006 Chih-Jen Lin
% All rights reserved.
% 
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions
% are met:
% 
% 1. Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% 
% 2. Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% 
% 3. Neither name of copyright holders nor the names of its contributors
% may be used to endorse or promote products derived from this software
% without specific prior written permission.
% 
% 
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
% ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
% A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
% EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
% PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%
% NMF by alternative non-negative least squares using projected gradients
% Author: Chih-Jen Lin, National Taiwan University
%
% W,H: output solution
% Winit,Hinit: initial solution
% tol: tolerance for a relative stopping condition
% timelimit, maxiter: limit of time and iterations



W = Winit; H = Hinit; initt = cputime;

gradW = W*(H*H') - V*H'; gradH = (W'*W)*H - W'*V;
initgrad = norm([gradW; gradH'],'fro');
fprintf('Init gradient norm %f\n', initgrad); 
tolW = max(0.001,tol)*initgrad; tolH = tolW;

for iter=1:maxiter,
  % stopping condition
  projnorm = norm([gradW(gradW<0 | W>0); gradH(gradH<0 | H>0)]);
  if projnorm < tol*initgrad | cputime-initt > timelimit,
    break;
  end
  
  [W,gradW,iterW] = nlssubprob(V',H',W',tolW,1000); W = W'; gradW = gradW';
  if iterW==1,
    tolW = 0.1 * tolW;
  end

  [H,gradH,iterH] = nlssubprob(V,W,H,tolH,1000);
  if iterH==1,
    tolH = 0.1 * tolH; 
  end

  if (iterW==1 & iterH==1 & tolH + tolW < tol*initgrad),
    fprintf('Failed to move\n'); break;
  end
  if rem(iter,10)==0, fprintf('.'); end
end
fprintf('\nIter = %d Final proj-grad norm %f\n', iter, projnorm);



function [H,grad,iter] = nlssubprob(V,W,Hinit,tol,maxiter)
% H, grad: output solution and gradient
% iter: #iterations used
% V, W: constant matrices
% Hinit: initial solution
% tol: stopping tolerance
% maxiter: limit of iterations

H = Hinit; 
WtV = W'*V;
WtW = W'*W; 

alpha = 1; beta = 0.1;
for iter=1:maxiter,  
  grad = WtW*H - WtV;
  projgrad = norm(grad(grad < 0 | H >0));
  if projgrad < tol,
    break
  end

  % search step size 
  Hn = max(H - alpha*grad, 0); d = Hn-H;
  gradd=sum(sum(grad.*d)); dQd = sum(sum((WtW*d).*d));
  if gradd + 0.5*dQd > 0.01*gradd, 
    % decrease alpha
    while 1,
      alpha = alpha*beta;
      Hn = max(H - alpha*grad, 0); d = Hn-H;
      gradd=sum(sum(grad.*d)); dQd = sum(sum((WtW*d).*d));
      if gradd + 0.5*dQd <= 0.01*gradd | alpha < 1e-20,      
        H = Hn; break;
      end
    end 
  else 
    % increase alpha
    while 1,
      Hp = Hn;
      alpha = alpha/beta;
      Hn = max(H - alpha*grad, 0); d = Hn-H;
      gradd=sum(sum(grad.*d)); dQd = sum(sum((WtW*d).*d));
      if gradd + 0.5*dQd > 0.01*gradd | Hn == Hp | alpha > 1e10,      
        H = Hp; alpha = alpha*beta; break;
      end
    end 
  end
end

if iter==maxiter,
  fprintf('Max iter in nlssubprob\n');
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -