📄 ebcot_lite_decode_passes.c
字号:
/*****************************************************************************//* Copyright 1998, Hewlett-Packard Company *//* All rights reserved *//* File: "ebcot_lite_decode_passes.c" *//* Description: Entropy decoding passes for EBCOT (lite) *//* Author: David Taubman *//* Affiliation: Hewlett-Packard and *//* The University of New South Wales, Australia *//* Version: VM5.1 *//* Last Revised: 19 August, 1999 *//*****************************************************************************//*****************************************************************************//* Modified to incorporate MQ-coder by Mitsubishi Electric Corp. *//* Copyright 1999, Mitsubishi Electric Corp. *//* All rights reserved for modified parts *//*****************************************************************************//*****************************************************************************//* Modified by David Taubman to improve implementation efficiency. Copyright *//* 1999 by Hewlett-Packard Company with all rights reserved for the modified *//* parts. *//*****************************************************************************//*****************************************************************************//* Modified to combine entropy coders *//* Copyright 1999 Science Applications International Corporation (SAIC). *//* Copyright 1999 University of Arizona, Arizona Board of Regents. *//* All Rights Reservedi for modified parts. *//*****************************************************************************/#include <local_services.h>#include <stdlib.h>#include <string.h>#include <assert.h>#include <ifc.h>#include "ebcot_common.h"#include "ebcot_decoder.h"/* ========================================================================= *//* -------------------- Simpler Decoding Pass Functions -------------------- *//* ========================================================================= */ /* The following functions are implemented in a manner which can be easily carried to any number of different software/dsp platforms. Further improvements in execution speed may be obtained by targeting 64-bit architectures or by resorting to the implementation tricks which appear in the "su_..." versions of the functions in the section following the banner, "Speedup Decoding Pass Functions". The latter functions, however, are significantly more difficult to understand. *//*****************************************************************************//* STATIC first_pass_func *//*****************************************************************************/static void first_pass_func(block_master_ptr master) /* This function must be applied once, at the start of each quantization layer (bit plane). It looks for all samples whose context word has the IS_REFINED flag turned off. These samples are brought up to date with the current bit plane, while all other samples simply have their IS_REFINED flag turned off in preparation for future passes. Note that bringing samples up to date with the current bit plane never involves magnitude refinement. */{ register std_short *cp; register std_int cum_delta, thresh; register ifc_int *dp; register int c; register std_short ctxt; register ifc_int shift; register dst_arith_state_ptr state; register dst_context_state_ptr csp; register ifc_int val, symbol; register unsigned long creg; register std_int areg; int ct; ifc_int lsb; std_short non_causal; std_byte *zc_lut; int cols, stripe_gap, r; dst_context_state_ptr csp_base; state = &(master->coder_state); if (!state->mqd.active) dst_arith_coder__activate(state); assert((master->bit_idx > 0) && ((master->interleaved_row_gap & 3) == 0)); shift = master->bit_idx; lsb = 1 << shift; areg = state->mqd.areg; creg = state->mqd.creg; ct = state->mqd.ct; dst_compute_ac_thresh(areg,creg,thresh); cum_delta = 0; csp_base = state->contexts; zc_lut = master->zc_lut; non_causal = 1 - master->causal; cols = master->width; stripe_gap = master->interleaved_row_gap; cp = master->interleaved_context_buffer; dp = master->interleaved_sample_buffer; for (r=master->stripes; r > 0; r--, dp+=stripe_gap-(cols<<2), cp+=stripe_gap-(cols<<2)) for (c=cols; c > 0; c--, dp+=4, cp+=4) { if ((((std_int *) cp)[0] | ((std_int *) cp)[1]) == 0) { /* Special processing to reduce average symbol count. */ csp = csp_base + AGG_OFFSET; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); if (!symbol) continue; else { /* Get the run-length and jump into the appropriate location in the regular decoding procedure. */ csp = csp_base + UNI_OFFSET; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); ctxt = symbol<<1; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); ctxt |= symbol; switch (ctxt) { case 0: ctxt = cp[0]; goto new_sig0; case 1: ctxt = cp[1]; goto new_sig1; case 2: ctxt = cp[2]; goto new_sig2; case 3: ctxt = cp[3]; goto new_sig3; } } } ctxt = cp[0]; if (!(ctxt & (SELF_SIG | OUT_OF_BOUNDS | IS_REFINED))) { csp = csp_base + (ZC_OFFSET + zc_lut[ctxt & ZC_MASK]); dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); if (symbol) { /* New significant value; update contexts & get sign. */new_sig0: val = ebcot_sc_lut[(ctxt>>SIGN_POS)&0x00FF]; csp = csp_base + SC_OFFSET + (val & 0x000F); val &= MIN_IFC_INT; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); val ^= (symbol << (IMPLEMENTATION_PRECISION-1)); ctxt |= SELF_SIG; cp[(-stripe_gap+3)-4] |= (non_causal << BR_POS); cp[(-stripe_gap+3)+4] |= (non_causal << BL_POS); cp[1-4] |= TR_SIG; cp[1+4] |= TL_SIG; if (val) { /* Negative sample. */ cp[4] |= CL_SIG | H_NVE_SIG; cp[-4] |= CR_SIG | H_NVE_SIG; cp[(-stripe_gap+3)]|= (non_causal << BC_POS) | (non_causal << V_NVE_POS); cp[1] |= TC_SIG | V_NVE_SIG; } else { /* Positive sample. */ cp[4] |= CL_SIG | H_PVE_SIG; cp[-4] |= CR_SIG | H_PVE_SIG; cp[(-stripe_gap+3)]|= (non_causal << BC_POS) | (non_causal << V_PVE_POS); cp[1] |= TC_SIG | V_PVE_SIG; } val |= lsb + (lsb>>1); dp[0] = val; /* Write new non-zero value back to buffer. */ } } cp[0] = ctxt & ~IS_REFINED; ctxt = cp[1]; if (!(ctxt & (SELF_SIG | OUT_OF_BOUNDS | IS_REFINED))) { csp = csp_base + (ZC_OFFSET + zc_lut[ctxt & ZC_MASK]); dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); if (symbol) { /* New significant value; update contexts & get sign. */new_sig1: val = ebcot_sc_lut[(ctxt>>SIGN_POS)&0x00FF]; csp = csp_base + SC_OFFSET + (val & 0x000F); val &= MIN_IFC_INT; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); val ^= (symbol << (IMPLEMENTATION_PRECISION-1)); ctxt |= SELF_SIG; cp[0-4] |= BR_SIG; cp[0+4] |= BL_SIG; cp[2-4] |= TR_SIG; cp[2+4] |= TL_SIG; if (val) { /* Negative sample. */ cp[1+4] |= CL_SIG | H_NVE_SIG; cp[1-4] |= CR_SIG | H_NVE_SIG; cp[0] |= BC_SIG | V_NVE_SIG; cp[2] |= TC_SIG | V_NVE_SIG; } else { /* Positive sample. */ cp[1+4] |= CL_SIG | H_PVE_SIG; cp[1-4] |= CR_SIG | H_PVE_SIG; cp[0] |= BC_SIG | V_PVE_SIG; cp[2] |= TC_SIG | V_PVE_SIG; } val |= lsb + (lsb>>1); dp[1] = val; /* Write new non-zero value back to buffer. */ } } cp[1] = ctxt & ~IS_REFINED; ctxt = cp[2]; if (!(ctxt & (SELF_SIG | OUT_OF_BOUNDS | IS_REFINED))) { csp = csp_base + (ZC_OFFSET + zc_lut[ctxt & ZC_MASK]); dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); if (symbol) { /* New significant value; update contexts & get sign. */new_sig2: val = ebcot_sc_lut[(ctxt>>SIGN_POS)&0x00FF]; csp = csp_base + SC_OFFSET + (val & 0x000F); val &= MIN_IFC_INT; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); val ^= (symbol << (IMPLEMENTATION_PRECISION-1)); ctxt |= SELF_SIG; cp[1-4] |= BR_SIG; cp[1+4] |= BL_SIG; cp[3-4] |= TR_SIG; cp[3+4] |= TL_SIG; if (val) { /* Negative sample. */ cp[2+4] |= CL_SIG | H_NVE_SIG; cp[2-4] |= CR_SIG | H_NVE_SIG; cp[1] |= BC_SIG | V_NVE_SIG; cp[3] |= TC_SIG | V_NVE_SIG; } else { /* Positive sample. */ cp[2+4] |= CL_SIG | H_PVE_SIG; cp[2-4] |= CR_SIG | H_PVE_SIG; cp[1] |= BC_SIG | V_PVE_SIG; cp[3] |= TC_SIG | V_PVE_SIG; } val |= lsb + (lsb>>1); dp[2] = val; /* Write new non-zero value back to buffer. */ } } cp[2] = ctxt & ~IS_REFINED; ctxt = cp[3]; if (!(ctxt & (SELF_SIG | OUT_OF_BOUNDS | IS_REFINED))) { csp = csp_base + (ZC_OFFSET + zc_lut[ctxt & ZC_MASK]); dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); if (symbol) { /* New significant value; update contexts & get sign. */new_sig3: val = ebcot_sc_lut[(ctxt>>SIGN_POS)&0x00FF]; csp = csp_base + SC_OFFSET + (val & 0x000F); val &= MIN_IFC_INT; dst_get_symbol_skewed(areg,creg,thresh,cum_delta, ct,state,symbol,csp); val ^= (symbol << (IMPLEMENTATION_PRECISION-1)); ctxt |= SELF_SIG; cp[2-4] |= BR_SIG; cp[2+4] |= BL_SIG; cp[stripe_gap-4] |= TR_SIG; cp[stripe_gap+4] |= TL_SIG; if (val) { /* Negative sample. */ cp[3+4] |= CL_SIG | H_NVE_SIG; cp[3-4] |= CR_SIG | H_NVE_SIG; cp[2] |= BC_SIG | V_NVE_SIG; cp[stripe_gap] |= TC_SIG | V_NVE_SIG; } else { /* Positive sample. */ cp[3+4] |= CL_SIG | H_PVE_SIG; cp[3-4] |= CR_SIG | H_PVE_SIG; cp[2] |= BC_SIG | V_PVE_SIG; cp[stripe_gap] |= TC_SIG | V_PVE_SIG; } val |= lsb + (lsb>>1); dp[3] = val; /* Write new non-zero value back to buffer. */ } } cp[3] = ctxt & ~IS_REFINED; } areg -= cum_delta; creg -= ((unsigned) cum_delta) << 16; state->mqd.areg = areg; state->mqd.creg = creg; state->mqd.ct = ct;}/*****************************************************************************//* STATIC raw_zero_refinement_pass_func *//*****************************************************************************/static void raw_zero_refinement_pass_func(block_master_ptr master){ register std_short *cp; register ifc_int *dp; register int c;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -