📄 xsasdramcntl.vhd
字号:
-- when CLK_DIV=1 so we don't care what is output on thr CLK_DIV output of the DLL.
constant CLKDV_DIVIDE : real := real_select(CLK_DIV = 1.0, 2.0, CLK_DIV);
signal int_clkin, -- signals for internal logic clock DLL
int_clk1x, int_clk1x_b,
int_clk2x, int_clk2x_b,
int_clkdv, int_clkdv_b : std_logic;
signal ext_clkin, sclkfb_b, ext_clk1x : std_logic; -- signals for external logic clock DLL
signal dllext_rst, dllext_rst_n : std_logic; -- external DLL reset signal
signal clk_i : std_logic; -- clock for SDRAM controller logic
signal int_lock, ext_lock, lock_i : std_logic; -- DLL lock signals
-- bus for holding output data from SDRAM
signal sDOut : std_logic_vector(sData'range);
signal sDOutEn : std_logic;
begin
-----------------------------------------------------------
-- setup the DLLs for clock generation
-----------------------------------------------------------
-- master clock must come from a dedicated clock pin
clkin : IBUFG port map (I => clk, O => int_clkin);
-- The external DLL is driven from the same source as the internal DLL
-- if the clock divisor is 1. If CLK_DIV is greater than 1, then the external DLL
-- is driven by the divided clock from the internal DLL. Otherwise, the SDRAM will be
-- clocked on the opposite edge if the internal and external logic are not in-phase.
ext_clkin <= int_clkin when (IN_PHASE and (CLK_DIV = 1.0)) else
int_clkdv_b when (IN_PHASE and (CLK_DIV/=1.0)) else
not int_clkin;
-- Generate the DLLs for sync'ing the clocks as long as the clocks
-- have a frequency high enough for the DLLs to lock
gen_dlls : if IN_PHASE generate
-- generate an internal clock sync'ed to the master clock
dllint : CLKDLL
generic map(
CLKDV_DIVIDE => CLKDV_DIVIDE
)
port map(
CLKIN => int_clkin,
CLKFB => int_clk1x_b,
CLK0 => int_clk1x,
RST => ZERO,
CLK90 => open,
CLK180 => open,
CLK270 => open,
CLK2X => int_clk2x,
CLKDV => int_clkdv,
LOCKED => int_lock
);
-- sync'ed single, doubled and divided clocks for use by internal logic
int_clk1x_buf : BUFG port map(I => int_clk1x, O => int_clk1x_b);
int_clk2x_buf : BUFG port map(I => int_clk2x, O => int_clk2x_b);
int_clkdv_buf : BUFG port map(I => int_clkdv, O => int_clkdv_b);
-- The external DLL is held in a reset state until the internal DLL locks.
-- Then the external DLL reset is released after a delay set by this shift register.
-- This keeps the external DLL from locking onto the internal DLL clock signal
-- until it is stable.
SRL16_inst : SRL16
generic map (
INIT => X"0000"
)
port map (
CLK => clk_i,
A0 => '1',
A1 => '1',
A2 => '1',
A3 => '1',
D => int_lock,
Q => dllext_rst_n
);
dllext_rst <= not dllext_rst_n when CLK_DIV/=1.0 else ZERO;
-- generate an external SDRAM clock sync'ed to the master clock
sclkfb_buf : IBUFG port map(I => sclkfb, O => sclkfb_b); -- SDRAM clock with PCB delays
dllext : CLKDLL port map(
CLKIN => ext_clkin, -- this is either the master clock or the divided clock from the internal DLL
CLKFB => sclkfb_b,
CLK0 => ext_clk1x,
RST => dllext_rst,
CLK90 => open,
CLK180 => open,
CLK270 => open,
CLK2X => open,
CLKDV => open,
LOCKED => ext_lock
);
end generate;
-- The buffered clock is just a buffered version of the master clock.
bufclk <= int_clkin;
-- The host-side clock comes from the CLK0 output of the internal DLL if the clock divisor is 1.
-- Otherwise it comes from the CLKDV output if the clock divisor is greater than 1.
-- Otherwise it is just a copy of the master clock if the DLLs aren't being used.
clk_i <= int_clk1x_b when (IN_PHASE and (CLK_DIV = 1.0)) else
int_clkdv_b when (IN_PHASE and (CLK_DIV/=1.0)) else
int_clkin;
clk1x <= clk_i; -- This is the output of the host-side clock
clk2x <= int_clk2x_b when IN_PHASE else int_clkin; -- this is the doubled master clock
sclk <= ext_clk1x when IN_PHASE else ext_clkin; -- this is the clock for the external SDRAM
-- indicate the lock status of the internal and external DLL
lock_i <= int_lock and ext_lock when IN_PHASE else YES;
lock <= lock_i; -- lock signal for the host logic
-- SDRAM memory controller module
u1 : sdramCntl
generic map(
FREQ => SDRAM_FREQ,
IN_PHASE => IN_PHASE,
PIPE_EN => PIPE_EN,
MAX_NOP => MAX_NOP,
MULTIPLE_ACTIVE_ROWS => MULTIPLE_ACTIVE_ROWS,
DATA_WIDTH => DATA_WIDTH,
NROWS => NROWS,
NCOLS => NCOLS,
HADDR_WIDTH => HADDR_WIDTH,
SADDR_WIDTH => SADDR_WIDTH
)
port map(
clk => clk_i, -- master clock from external clock source (unbuffered)
lock => lock_i, -- valid synchronized clocks indicator
rst => rst, -- reset
rd => rd, -- host-side SDRAM read control from memory tester
wr => wr, -- host-side SDRAM write control from memory tester
rdPending => rdPending,
opBegun => opBegun, -- SDRAM memory read/write done indicator
earlyOpBegun => earlyOpBegun, -- SDRAM memory read/write done indicator
rdDone => rdDone, -- SDRAM memory read/write done indicator
done => done,
hAddr => hAddr, -- host-side address from memory tester
hDIn => hDIn, -- test data pattern from memory tester
hDOut => hDOut, -- SDRAM data output to memory tester
status => status, -- SDRAM controller state (for diagnostics)
cke => cke, -- SDRAM clock enable
ce_n => cs_n, -- SDRAM chip-select
ras_n => ras_n, -- SDRAM RAS
cas_n => cas_n, -- SDRAM CAS
we_n => we_n, -- SDRAM write-enable
ba => ba, -- SDRAM bank address
sAddr => sAddr, -- SDRAM address
sDIn => sData, -- input data from SDRAM
sDOut => sDOut, -- output data to SDRAM
sDOutEn => sDOutEn, -- enable drivers to send data to SDRAM
dqmh => dqmh, -- SDRAM DQMH
dqml => dqml -- SDRAM DQML
);
sData <= sDOut when sDOutEn = YES else (others => 'Z');
end arch;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -