📄 中断控制器.txt
字号:
// This is a simple Programmable Interrupt Controller.
// The number of interrupts is depending on the databus size.
// There's one interrupt input per databit (i.e. 16 interrupts for a 16
// bit databus).
// All attached devices share the same CPU priority level.
//
//
//
// Registers:
//
// 0x00: EdgeEnable Register
// bits 7:0 R/W Edge Enable '1' = edge triggered interrupt source
// '0' = level triggered interrupt source
// 0x01: PolarityRegister
// bits 7:0 R/W Polarity '1' = high level / rising edge
// '0' = low level / falling edge
// 0x02: MaskRegister
// bits 7:0 R/W Mask '1' = interrupt masked (disabled)
// '0' = interrupt not masked (enabled)
// 0x03: PendingRegister
// bits 7:0 R/W Pending '1' = interrupt pending
// '0' = no interrupt pending
//
// A CPU interrupt is generated when an interrupt is pending and its
// MASK bit is cleared.
//
//
//
// HOWTO:
//
// Clearing pending interrupts:
// Writing a '1' to a bit in the interrupt pending register clears the
// interrupt. Make sure to clear the interrupt at the source before
// writing to the interrupt pending register. Otherwise the interrupt
// will be set again.
//
// Priority based interrupts:
// Upon reception of an interrupt, check the interrupt register and
// determine the highest priority interrupt. Mask all interrupts from the
// current level to the lowest level. This negates the interrupt line, and
// makes sure only interrupts with a higher level are triggered. After
// completion of the interrupt service routine, clear the interrupt source,
// the interrupt bit in the pending register, and restore the MASK register
// to it's previous state.
//
// Addapt the core for fewer interrupt sources:
// If less than 8 interrupt sources are required, than the 'is' parameter
// can be set to the amount of required interrupts. Interrupts are mapped
// starting at the LSBs. So only the 'is' LSBs per register are valid. All
// other bits (i.e. the 8-'is' MSBs) are set to zero '0'.
// Codesize is approximately linear to the amount of interrupts. I.e. using
// 4 instead of 8 interrupt sources reduces the size by approx. half.
//
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
module simple_pic(
clk_i, rst_i, cyc_i, stb_i, adr_i, we_i, dat_i, dat_o, ack_o, int_o,
irq
);
parameter is = 8; // Number of interrupt sources
//
// Inputs & outputs
//
// 8bit WISHBONE bus slave interface
input clk_i; // clock
input rst_i; // reset (asynchronous active low)
input cyc_i; // cycle
input stb_i; // strobe (cycle and strobe are the same signal)
input [ 2:1] adr_i; // address
input we_i; // write enable
input [ 7:0] dat_i; // data output
output [ 7:0] dat_o; // data input
output ack_o; // normal bus termination
output int_o; // interrupt output
//
// Interrupt sources
//
input [is:1] irq; // interrupt request inputs
//
// Module body
//
reg [is:1] pol, edgen, pending, mask; // register bank
reg [is:1] lirq, dirq; // latched irqs, delayed latched irqs
//
// perform parameter checks
//
// synopsys translate_off
initial
begin
if(is > 8)
$display("simple_pic: max. 8 interrupt sources supported.");
end
// synopsys translate_on
//
// latch interrupt inputs
always @(posedge clk_i)
lirq <= #1 irq;
//
// generate delayed latched irqs
always @(posedge clk_i)
dirq <= #1 lirq;
//
// generate actual triggers
function trigger;
input edgen, pol, lirq, dirq;
reg edge_irq, level_irq;
begin
edge_irq = pol ? (lirq & ~dirq) : (dirq & ~lirq);
level_irq = pol ? lirq : ~lirq;
trigger = edgen ? edge_irq : level_irq;
end
endfunction
reg [is:1] irq_event;
integer n;
always @(posedge clk_i)
for(n=1; n<=is; n=n+1)
irq_event[n] <= #1 trigger(edgen[n], pol[n], lirq[n], dirq[n]);
//
// generate wishbone register bank writes
wire wb_acc = cyc_i & stb_i; // WISHBONE access
wire wb_wr = wb_acc & we_i; // WISHBONE write access
always @(posedge clk_i or negedge rst_i)
if (~rst_i)
begin
pol <= #1 {{is}{1'b0}}; // clear polarity register
edgen <= #1 {{is}{1'b0}}; // clear edge enable register
mask <= #1 {{is}{1'b1}}; // mask all interrupts
end
else if(wb_wr) // wishbone write cycle??
case (adr_i) // synopsys full_case parallel_case
2'b00: edgen <= #1 dat_i[is-1:0]; // EDGE-ENABLE register
2'b01: pol <= #1 dat_i[is-1:0]; // POLARITY register
2'b10: mask <= #1 dat_i[is-1:0]; // MASK register
2'b11: ; // PENDING register is a special case (see below)
endcase
// pending register is a special case
always @(posedge clk_i or negedge rst_i)
if (~rst_i)
pending <= #1 {{is}{1'b0}}; // clear all pending interrupts
else if ( wb_wr & (&adr_i) )
pending <= #1 (pending & ~dat_i[is-1:0]) | irq_event;
else
pending <= #1 pending | irq_event;
//
// generate dat_o
reg [7:0] dat_o;
always @(posedge clk_i)
case (adr_i) // synopsys full_case parallel_case
2'b00: dat_o <= #1 { {{8-is}{1'b0}}, edgen};
2'b01: dat_o <= #1 { {{8-is}{1'b0}}, pol};
2'b10: dat_o <= #1 { {{8-is}{1'b0}}, mask};
2'b11: dat_o <= #1 { {{8-is}{1'b0}}, pending};
endcase
//
// generate ack_o
reg ack_o;
always @(posedge clk_i)
ack_o <= #1 wb_acc & !ack_o;
//
// generate CPU interrupt signal
reg int_o;
always @(posedge clk_i)
int_o <= #1 |(pending & ~mask);
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -