📄 cluto.h
字号:
_declspec(dllexport) void __cdecl CLUTO_S_TreeReorderInternal(int nrows, int *rwgts, float *smat, int memflag, int dbglvl, int *ptree, int **ftree);_declspec(dllexport) void __cdecl CLUTO_V_TreeReorder(int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun, int rowmodel, int colmodel, float colprune, int dbglvl, int *ptree, int **ftree);_declspec(dllexport) void __cdecl CLUTO_S_TreeReorder(int nvtxs, int *xadj, int *adjncy, float *adjwgt, int dbglvl, int *ptree, int **ftree);_declspec(dllexport) void __cdecl CLUTO_V_ClusterTreeReorder(int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun, int rowmodel, int colmodel, float colprune, int dbglvl, int nparts, int *part, int *ptree, int **ftree);_declspec(dllexport) void __cdecl CLUTO_S_ClusterTreeReorder(int nvtxs, int *xadj, int *adjncy, float *adjwgt, int dbglvl, int nparts, int *part, int *ptree, int **ftree);_declspec(dllexport) void __cdecl CLUTO_V_ReorderPartitions(int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun, int rowmodel, int colmodel, float colprune, int nparts, int *part);_declspec(dllexport) void __cdecl CLUTO_S_ReorderPartitions(int nvtxs, int *xadj, int *adjncy, float *adjwgt, int nparts, int *part);_declspec(dllexport) void __cdecl CLUTO_V_GetClusterDistanceMatrix(int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun, int rowmodel, int colmodel, float colprune, int dbglvl, int nparts, int *part, float *distmat);_declspec(dllexport) void __cdecl CLUTO_S_GetClusterDistanceMatrix(int nvtxs, int *xadj, int *adjncy, float *adjwgt, int dbglvl, int nparts, int *part, float *distmat);_declspec(dllexport) void __cdecl CLUTO_V_GetClusterSummaries(int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun, int rowmodel, int colmodel, float colprune, int nparts, int *part, int sumtype, int nfeatures, int *r_nsum, int **r_spid, float **r_swgt, int **r_sumptr, int **r_sumind);#ifdef __cplusplus}#endif/*------------------------------------------------------------------------* Constant definitions *-------------------------------------------------------------------------*//* Different choices for RowModel */#define CLUTO_ROWMODEL_NONE 1 /* Use the rows as is */#define CLUTO_ROWMODEL_MAXTF 2 /* TF = .5 + .5(TF/max(|TF|)) */#define CLUTO_ROWMODEL_SQRT 3 /* TF = 1+sign(TF, sqrt(|TF|)) */#define CLUTO_ROWMODEL_LOG 4 /* TF = 1+sign(TF, log2(|TF|)) *//* Different choices for ColModel */#define CLUTO_COLMODEL_NONE 1 /* Use the columns as is */#define CLUTO_COLMODEL_IDF 2 /* Scale-the columns following a binary IDF model *//* Different cluster criterion functions */#define CLUTO_CLFUN_I1 1 /* The I1 from the paper */#define CLUTO_CLFUN_I2 2 /* The I2 from the paper */#define CLUTO_CLFUN_E1 3 /* The E1 from the paper */#define CLUTO_CLFUN_G1 4 /* The G1 from the paper */#define CLUTO_CLFUN_G1P 5 /* The G1' from the paper */#define CLUTO_CLFUN_H1 6 /* The H1 from the paper */#define CLUTO_CLFUN_H2 7 /* The H2 from the paper */#define CLUTO_CLFUN_SLINK 8 /* The traditional single-link / MST method */#define CLUTO_CLFUN_SLINK_W 9 /* The traditional single-link / MST method, cluster size weighted */#define CLUTO_CLFUN_CLINK 10 /* The traditional complete-link method */#define CLUTO_CLFUN_CLINK_W 11 /* The traditional complete-link method, cluster size weighted */#define CLUTO_CLFUN_UPGMA 12 /* The traditional UPGMA method */#define CLUTO_CLFUN_UPGMA_W 13 /* The traditional weighted UPGMA method *//* The following are criterion functions for graph-based clustering */#define CLUTO_CLFUN_CUT 15 /* Edge-cut based */#define CLUTO_CLFUN_RCUT 16 /* Ratio cut */#define CLUTO_CLFUN_NCUT 17 /* Normalized cut */#define CLUTO_CLFUN_MMCUT 18 /* Min-Max cut *//* Different cluster selection schemes for RB */#define CLUTO_CSTYPE_LARGEFIRST 1 /* Select the largest cluster to bisect */#define CLUTO_CSTYPE_BESTFIRST 2 /* Select the cluster that leads the best value of the criterion function */#define CLUTO_CSTYPE_LARGESUBSPACEFIRST 3 /* Selects the cluster that leads to the largest subspace reduction *//* Different dbglvl options */#define CLUTO_DBG_PROGRESS 1 /* Show simple progress statistics */#define CLUTO_DBG_RPROGRESS 2 /* Show simple progress statistics during refinement */#define CLUTO_DBG_APROGRESS 4 /* Show progress during the agglomeration */#define CLUTO_DBG_CPROGRESS 8 /* Show progress statistics during coarsening */#define CLUTO_DBG_MPROGRESS 16 /* Show vertex movement information during refinement */#define CLUTO_DBG_CCMPSTAT 32 /* Show stats during cc elimination *//* Different option for memory re-use for the SA-routines */#define CLUTO_MEM_NOREUSE 1 /* Preserves the supplied information */#define CLUTO_MEM_REUSE 2 /* Does not preserve the supplied information *//* Different types of trees that CLUTO can build on top of the clustering solution */#define CLUTO_TREE_TOP 1 /* Builds a tree on top of the supplied clustering */#define CLUTO_TREE_FULL 2 /* Builds the entire tree that preserves the clustering *//* Different similarity functions that CLUTO supports */#define CLUTO_SIM_COSINE 1 /* Similarity is measured using the cosine function */#define CLUTO_SIM_CORRCOEF 2 /* Similarity is measured using Pearson's correlatio coefficient */#define CLUTO_SIM_EDISTANCE 3 /* Similarity is measured using the negative Euclidean distance */#define CLUTO_SIM_EJACCARD 4 /* Similarity is measured using the extended Jaccard *//* Different types of optimizers implemeted by CLUTO */#define CLUTO_OPTIMIZER_SINGLELEVEL 1 /* Traditional single-level optimizer */#define CLUTO_OPTIMIZER_MULTILEVEL 2 /* Better multi-level optimizer *//* Different ways for performing the graph coarsening */#define CLUTO_MTYPE_HEDGE 1 /* Heavy-edge matching */#define CLUTO_MTYPE_HSTAR 2 /* Heavy-star matching */#define CLUTO_MTYPE_HSTAR2 3 /* Heavy-star matching *//* Different type of neighborhood graph models */#define CLUTO_GRMODEL_EXACT_ASYMETRIC_DIRECT 1 /* Computes similarity exactly, and includes edges for all of them */#define CLUTO_GRMODEL_EXACT_SYMETRIC_DIRECT 2 /* Computes similarity exactly, and includes edges only if they are shared */#define CLUTO_GRMODEL_INEXACT_ASYMETRIC_DIRECT 3 /* Computes most similar vertices inexactly, and includes edges for all of them */#define CLUTO_GRMODEL_INEXACT_SYMETRIC_DIRECT 4 /* Computes most similar vertices inexactly, includes edges only if they are shared */#define CLUTO_GRMODEL_EXACT_ASYMETRIC_LINKS 5 /* Computes similarity exactly, and includes edges for all of them */#define CLUTO_GRMODEL_EXACT_SYMETRIC_LINKS 6 /* Computes similarity exactly, and includes edges only if they are shared */#define CLUTO_GRMODEL_INEXACT_ASYMETRIC_LINKS 7 /* Computes most similar vertices inexactly, and includes edges for all of them */#define CLUTO_GRMODEL_INEXACT_SYMETRIC_LINKS 8 /* Computes most similar vertices inexactly, includes edges only if they are shared */#define CLUTO_GRMODEL_ASYMETRIC_DIRECT CLUTO_GRMODEL_EXACT_ASYMETRIC_DIRECT#define CLUTO_GRMODEL_ASYMETRIC_LINKS CLUTO_GRMODEL_EXACT_ASYMETRIC_LINKS#define CLUTO_GRMODEL_SYMETRIC_DIRECT CLUTO_GRMODEL_EXACT_SYMETRIC_DIRECT#define CLUTO_GRMODEL_SYMETRIC_LINKS CLUTO_GRMODEL_EXACT_SYMETRIC_LINKS#define CLUTO_GRMODEL_NONE 9/* Summary Types */#define CLUTO_SUMMTYPE_MAXCLIQUES 1 /* Find maximal feature cliques */#define CLUTO_SUMMTYPE_MAXITEMSETS 2 /* Find maximal itemset cliques *//* Cluto's version number */#define CLUTO_VER_MAJOR 2#define CLUTO_VER_MINOR 1#define CLUTO_VER_SUBMINOR 1#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -