📄 optionsdoc.htm
字号:
Gate is a power saving property that can be used in CoolRunner-II designs. <!--kadov_tag{{<spaces>}}--> <!--kadov_tag{{</spaces>}}-->This option allows you to turn Data Gate off in case you want the fitter to ignore data gate.</p></li> <li class=kadov-p><p class="whs29"><span style="font-weight: bold;"><B>Tristate Outputs Termination Node</B></span> -- The Tristate Output Termination Mode globally sets all tristate outputs to the specified termination mode. By default, this field is set to Pullup.. <!--kadov_tag{{<spaces>}}--> <!--kadov_tag{{</spaces>}}-->The options are Pullup, Keeper and Float.</p></li> <li class=kadov-p><p class="whs30"><span style="font-weight: bold;"><B>Create Programmable Ground Pins on Unused I/O</B></span> -- The Create Programmable GND Pins on Unused I/O property controls the option to indicate that you want all unused I/O pads to be configured as ground pins. This can reduce ground bounce. By default, this option is set to ground. <!--kadov_tag{{<spaces>}}--> <!--kadov_tag{{</spaces>}}-->The options are Ground, Pullup, Keeper and Float.</p></li> <li class=kadov-p> <p class="whs31"><span style="font-weight: bold;"><B>Default Output Voltage Standard</B></span> -- set a default voltage standard for CoolRunner-II device pins.</p> <p class="whs32">IOSTANDARD names supported by CoolRunner-II are:</p> <!--(Table)=====================================================--> <table x-use-null-cells width="84.797%" cellspacing="0" class="whs33"> <col class="whs34"> <col class="whs35"> <col class="whs36"> <col class="whs37"> <tr valign=top> <td width="20.209%" class="whs38"> <p class="whs39">I/O Standard</td> <td width="16.192%" class="whs40"> <p align="center" class="whs41">VCC<span style="vertical-align: Sub;">IO</span></td> <td width="22.217%" class="whs42"> <p align="center" class="whs43">Input V<span style="vertical-align: Sub;">REF</span></td> <td width="41.383%" class="whs44"> <p align="center" class="whs45">Board Termination Voltage (V<span style="vertical-align: Sub;">TT</span>)</td></tr> <tr valign=top> <td width="20.209%" class="whs46"> <p class="whs47">LVTTL </td> <td width="16.192%" class="whs48"> <p align="center" class="whs49">3.3V</td> <td width="22.217%" class="whs50"> <p align="center" class="whs51">N/A</td> <td width="41.383%" class="whs52"> <p align="center" class="whs53">N/A</td></tr> <tr valign=top> <td width="20.209%" class="whs54"> <p class="whs55">LVCMOS33</td> <td width="16.192%" class="whs56"> <p align="center" class="whs57">3.3V</td> <td width="22.217%" class="whs58"> <p align="center" class="whs59">N/A</td> <td width="41.383%" class="whs60"> <p align="center" class="whs61">N/A</td></tr> <tr valign=top> <td width="20.209%" class="whs62"> <p class="whs63">LVCMOS25</td> <td width="16.192%" class="whs64"> <p align="center" class="whs65">2.5V</td> <td width="22.217%" class="whs66"> <p align="center" class="whs67">N/A</td> <td width="41.383%" class="whs68"> <p align="center" class="whs69">N/A</td></tr> <tr valign=top> <td width="20.209%" class="whs70"> <p class="whs71">LVCMOS18</td> <td width="16.192%" class="whs72"> <p align="center" class="whs73">1.8V</td> <td width="22.217%" class="whs74"> <p align="center" class="whs75">N/A</td> <td width="41.383%" class="whs76"> <p align="center" class="whs77">N/A</td></tr> <tr valign=top> <td width="20.209%" class="whs78"> <p class="whs79">LVCMOS15</td> <td width="16.192%" class="whs80"> <p align="center" class="whs81">1.5V</td> <td width="22.217%" class="whs82"> <p align="center" class="whs83">N/A</td> <td width="41.383%" class="whs84"> <p align="center" class="whs85">N/A</td></tr> <tr valign=top> <td width="20.209%" class="whs86"> <p class="whs87">HSTL_I</td> <td width="16.192%" class="whs88"> <p align="center" class="whs89">1.5V</td> <td width="22.217%" class="whs90"> <p align="center" class="whs91">0.75V</td> <td width="41.383%" class="whs92"> <p align="center" class="whs93">0.75V</td></tr> <tr valign=top> <td width="20.209%" class="whs94"> <p class="whs95">SSTL2_I</td> <td width="16.192%" class="whs96"> <p align="center" class="whs97">2.5V</td> <td width="22.217%" class="whs98"> <p align="center" class="whs99">1.25V</td> <td width="41.383%" class="whs100"> <p align="center" class="whs101">1.25V</td></tr> <tr valign=top> <td width="20.209%" class="whs102"> <p class="whs103">SSTL3_I</td> <td width="16.192%" class="whs104"> <p align="center" class="whs105">3.3V</td> <td width="22.217%" class="whs106"> <p align="center" class="whs107">1.5V</td> <td width="41.383%" class="whs108"> <p align="center" class="whs109">1.5V</td></tr> </table> <p class="whs110">The software automatically groups outputs with similar IOSTANDARD settings into the same bank when no location constraints are specified. </p> </li></ul><h2 class="whs111"><a name="XC9500/XL/XV Advanced Options"></a>XC9500/XL/XV Advanced Options</h2><p class="whs112">The following options are found under the Advanced tab for XC9500/XL/XV. <!--kadov_tag{{<spaces>}}--> <!--kadov_tag{{</spaces>}}-->Note that additional options for XC9500 only are also described below.</p><ul type="disc" class="whs113"> <li class=kadov-h4><h4 class="whs114">Use Global Clock(s) -- <span style="font-weight: normal;">Select this option to allow the fitter to assign input pins used as clocks to dedicated global clock (GCK) pins of the device. If this option is disabled, only pins identified with the BUFG=CLK property in the design (or UCF file) will be assigned to GCK device pins. By default, this option is on.</span> </h4></li> <li class=kadov-p><p class="whs115"><span style="font-weight: bold;"><B>Use Global Output Enable(s)</B></span> -- Select this option to allow the fitter to assign input pins used as output enable control to dedicated global OE (GTS) pins of the device. If this option is disabled, only pins identified with the BUFG=OE property in the design (or UCF file) will be assigned to GTS device pins. By default, this option is on. </p></li> <li class=kadov-p><p class="whs116"><span style="font-weight: bold;"><B>Use Global Set/Reset</B></span> -- Select this option to allow the fitter to assign input pins used as register asynchronous reset or preset control to the dedicated global set/reset (GSR) pin of the device. If this option is disabled, only a pin identified with the BUFG=SR property in the design (or UCF file) will be assigned to the GSR device pin. By default, this option is on.</p></li> <li class=kadov-p><p class="whs117"><span style="font-weight: bold;"><B>Create Programmable Ground Pins on Unused I/O</B></span> -- Select this option to indicate that you want all unused I/O pads to be configured as ground pins. This can reduce ground bounce. By default, this option is off.</p></li> <li class=kadov-p><p class="whs118"><span style="font-weight: bold;"><B>Macrocell Power Setting</B></span> -- Use this option to control device power consumption. Select Low or Standard to set the default power mode for the macrocells used to implement the design. Select Timing Driven to automatically reduce power on paths covered by timing specifications that can meet speed requirements while operating in low power. The default is Standard, which results in highest speed.</p></li></ul><p class="whs119">Note: Any explicit power control (PWR_MODE) properties in the design or constraints file take precedence over this Macrocell Power Setting. </p><ul type="disc" class="whs120"> <li class=kadov-p><p class="whs121"><span style="font-weight: bold;"><B>Enable FASTConnect/UIM Optimization (XC9500 only)</B></span> -- Enables optimization of the FASTConnect/UIM for XC9500 devices.</p></li> <li class=kadov-h4><h4 class="whs122">Use Local Feedback (XC9500 only)</h4></li></ul><p class="whs123">Select this option to enable the software to use local macrocell feedback whenever possible. The local feedback path, running from each macrocell output to an input of the same function block, has shorter propagation delay than the global feedback path. The fitter always tries to use local macrocell feedback (if possible) to satisfy timing constraints. This option allows the fitter to use local feedback to generally improve timing on remaining paths. Using local feedback can speed up your design but could also make it difficult to maintain the same timing after a design change. By default, this option is on.</p><!--(HR)============================================================--><hr class=whs4 style="margin-left: 40px; /*begin!kadov{{*/ float: aligncenter; /*}}end!kadov*/ " align=center><p class="whs124"><b><span style="font-weight: bold;"><B>Note: </B></span></b>To force the fitter to use local feedback, manually map both the source and load functions into the same function block using the property <span style="font-weight: bold;"><B><b>LOC=FB</b></B></span><span style="font-style: italic;"><I><i>nn</i></I></span>, then apply a timespec across the path. </p><!--(HR)============================================================--><hr class=whs5 style="margin-left: 40px; /*begin!kadov{{*/ float: aligncenter; /*}}end!kadov*/ " align=center><p class="whs125"><span><FONT SIZE=2 style="font-size:10pt;"><b style="font-weight: bold;">Note: </b></FONT></span>The XC9536 device does not have local feedback.</p><!--(HR)============================================================--><hr class=whs6 style="margin-left: 40px; /*begin!kadov{{*/ float: aligncenter; /*}}end!kadov*/ " align=center><ul type="disc" class="whs126"> <li class=kadov-h4><h4 class="whs127">Use Pin Feedback (XC9500 only)</h4></li></ul><p class="whs128">Select this option to enable the software to use I/O pin feedback whenever possible. The pin feedback path has slightly shorter propagation delay than the global feedback path. If this option is enabled, the software uses the pin feedback path instead of the global feedback path for macrocell signals that do not drive 3-state outputs or slew-rate-limited outputs, and where the associated I/O pin is not used as input-only. By default, this option is on.</p></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -