📄 fit_spline.m
字号:
function Dense_pts = Fit_spline (Pts)
Xdata = Pts(1, :);
Ydata = Pts(2, :);
% making splines separately for X and Y, but with common parameter
Length = 0;
Param(1) = Length;
for i=1:length(Xdata)-1
Length = Length + norm(Pts(:, i+1) - Pts(:, i));
Param(i+1) = Length;
end
% sampling at a dense set of points
Gridpts = [min(Param):0.1:max(Param)];
Xspline = round(spline(Param, Xdata, Gridpts));
Yspline = round(spline(Param, Ydata, Gridpts));
% if not sufficiently dense, adjusting those
k = 0; Dense_pts = zeros(2, 0);
for i=1:length(Xspline)-1
if max(abs(Xspline(i+1)-Xspline(i)), abs(Yspline(i+1)-Yspline(i))) > 1
for j=0:abs(Xspline(i+1)-Xspline(i))
k = k+1;
Dense_pts(:, k) = [Xspline(i) + j*sign(Xspline(i+1)-Xspline(i)); ...
Yspline(i)];
end
for j=0:abs(Yspline(i+1)-Yspline(i))
k = k+1;
Dense_pts(:, k) = [Xspline(i+1); ...
Yspline(i) + j*sign(Yspline(i+1)-Yspline(i))];
end
else
k = k+1;
Dense_pts(:, k) = [Xspline(i); Yspline(i)];
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -