📄 csrchbac.m
字号:
function [up_delta,J,dJdu_old,dJdu,retcode1,delta,tol] = csrchbac(up,u_vec,ref,Ai,Nu,N1,N2,d,Ni,Nj,dX, ...
dJdu,J,dperfa,delta,rho,dUtilde_dU,alpha,tol,Ts,min_i,max_i,Normalize,minp,maxp)
%CSRCHBAC One-dimensional minimization using backtracking for the NN Predictive Controller.
%
% Syntax
%
% [up_delta,J,dJdu_old,dJdu,retcode1,delta,tol] = csrchbac(up,u_vec,ref,Ai,Nu,N1,N2,d,Ni,Nj,dX, ...
% dJdu,J,dperfa,delta,rho,dUtilde_dU,alpha,tol,Ts,min_i,max_i,Normalize)
%
% Description
%
% CSRCHBAC is a linear search routine. It searches in a given direction
% to locate the minimum of the performance function in that direction.
% It uses a technique called backtracking.
%
% CSRCHBAC(...) takes these inputs,
% up - Plant Inputs during the Control Horizon (Nu).
% u - Plant Inputs during the Cost Horizon (N2).
% ref - Reference input.
% Ai - Initial input delay conditions.
% Nu - Control Horizon.
% N1 - Beginning of the Control and Cost Horizons (Usually 1).
% N2 - Cost Horizon.
% d - Counter that defined intial time (Usually 1).
% Ni - Number of delayed plant inputs.
% Nj - Number of delayed plant outputs.
% dX - Search direction vector for U.
% dJdu - Derivate of the cost function respect U.
% J - Cost function value.
% dperfa - Slope of performance value at current U in direction of dX.
% delta - Initial step size.
% rho - Control weighting factor.
% dUtlde_dU - Derivate of the difference of U(t)-U(t-1) respect U.
% alpha - Search parameter.
% tol - Tolerance on search.
% Ts - Time steps.
% min_i - Minimum Input to the Plant.
% max_i - Maximum Input to the Plant.
% Normalize - Indicate if the NN has input-output normalized.
% and returns,
% up_delta - New Plant Inputs for the Control Horizon (Nu).
% J - New Cost function value.
% dJdu_old - Previous Derivate of the cost function respect U.
% dJdu - New Derivate of the cost function respect U.
% RETCODE - Return code which has three elements. The first two elements correspond to
% the number of function evaluations in the two stages of the search
% The third element is a return code. These will have different meanings
% for different search algorithms. Some may not be used in this function.
% 0 - normal; 1 - minimum step taken; 2 - maximum step taken;
% 3 - beta condition not met.
% DELTA - New initial step size. Based on the current step size.
% TOL - New tolerance on search.
%
% Parameters used for the backstepping algorithm are:
% alpha - Scale factor which determines sufficient reduction in perf.
% beta - Scale factor which determines sufficiently large step size.
% low_lim - Lower limit on change in step size.
% up_lim - Upper limit on change in step size.
% maxstep - Maximum step length.
% minstep - Minimum step length.
% scale_tol - Parameter which relates the tolerance tol to the initial step
% size delta. Usually set to 20.
% The defaults for these parameters are set in the training function which
% calls it. See TRAINCGF, TRAINCGB, TRAINCGP, TRAINBFG, TRAINOSS
%
% Algorithm
%
% CSRCHBAC locates the minimum of the performance function in
% the search direction dX, using the backtracking algorithm
% described on page 126 and 328 of Dennis and Schnabel.
% (Numerical Methods for Unconstrained Optimization and Nonlinear Equations 1983).
%
% See also CSRCHBRE, CSRCHCHA, CSRCHGOL, CSRCHHYB
%
% References
%
% Dennis and Schnabel, Numerical Methods for Unconstrained Optimization
% and Nonlinear Equations, 1983.
% Orlando De Jesus, Martin Hagan, 1-30-00
% Copyright 1992-2002 The MathWorks, Inc.
% $Revision: 1.5 $ $Date: 2002/04/14 21:11:48 $
tiu = d-N1+Ni;
upi = [1:Nu-1 Nu(ones(1,N2-d-Nu+2))]; % [1 2 ... Nu Nu ... Nu]
uvi = [tiu:N2-N1+Ni];
% ALGORITHM PARAMETERS
delta=1;
scale_tol = 20;
beta = 0.9;
low_lim = 0.1;
up_lim = 0.5;
maxstep = 100;
minstep = 1e-6;
norm_dX = norm(dX);
minlambda = minstep/norm_dX;
maxlambda = maxstep/norm_dX;
cnt1 = 0;
cnt2 = 0;
start = 1;
perfa = J;
delta_orig=delta;
% TAKE INITIAL STEP
lambda = 1;
up_delta = max(min(up + lambda*dX,max_i),min_i); % A priori iteration
u_vec(uvi) = up_delta(upi); % Insert updated controls
% CALCULATE PERFORMANCE AT NEW POINT
[JJ,dJJ]=calcjjdjj(u_vec,Ni,Nu,Nj,N2,Ai,Ts,ref,tiu,rho,dUtilde_dU,Normalize,minp,maxp);
perfb = JJ;
dJdub = dJJ;
perfb_old=perfb;
lambda_old=lambda;
g_flag = 0;
cnt1 = cnt1 + 1;
count = 0;
% MINIMIZE ALONG A LINE (BACKTRACKING)
retcode = 4;
while retcode>3
count=count+1;
if (perfb <= perfa + alpha*lambda*dperfa) %CONDITION ALPHA IS SATISFIED
if (g_flag == 0)
dperfb = dJdub'*dX;
end
if (dperfb < beta * dperfa) %CONDITION BETA IS NOT SATISFIED
if (start==1) & (norm_dX<maxstep)
while (perfb<=perfa+alpha*lambda*dperfa)&(dperfb<beta*dperfa)&(lambda<maxlambda)
% INCREASE STEP SIZE UNTIL BETA CONDITION IS SATISFIED
lambda_old = lambda;
perfb_old = perfb;
dJdub_old = dJdub;
upb_old=up_delta;
lambda = min ([2*lambda maxlambda]);
up_delta = max(min(up + lambda*dX,max_i),min_i); % A priori iteration
u_vec(uvi) = up_delta(upi); % Insert updated controls
% CALCULATE PERFORMANCE AT NEW POINT
[JJ,dJJ]=calcjjdjj(u_vec,Ni,Nu,Nj,N2,Ai,Ts,ref,tiu,rho,dUtilde_dU,Normalize,minp,maxp);
perfb = JJ;
dJdub = dJJ;
cnt1 = cnt1 + 1;
g_flag = 0;
if (perfb <= perfa+alpha*lambda*dperfa)
dperfb = dJdub'*dX;
g_flag = 1;
end
end
end
if (lambda<1) | ((lambda>1)&(perfb>perfa+alpha*lambda*dperfa))
lambda_lo = min([lambda lambda_old]);
lambda_diff = abs(lambda_old - lambda);
if (lambda < lambda_old)
perf_lo = perfb;
perf_hi = perfb_old;
else
perf_lo = perfb_old;
perf_hi = perfb;
end
while (dperfb<beta*dperfa)&(lambda_diff>minlambda)
lambda_incr=-dperfb*(lambda_diff^2)/(2*(perf_hi-(perf_lo+dperfb*lambda_diff)));
if (lambda_incr<0.2*lambda_diff)
lambda_incr=0.2*lambda_diff;
end
%UPDATE X
lambda = lambda_lo + lambda_incr;
up_delta = max(min(up + lambda*dX,max_i),min_i); % A priori iteration
u_vec(uvi) = up_delta(upi); % Insert updated controls
% CALCULATE PERFORMANCE AT NEW POINT
[JJ,dJJ]=calcjjdjj(u_vec,Ni,Nu,Nj,N2,Ai,Ts,ref,tiu,rho,dUtilde_dU,Normalize,minp,maxp);
perfb = JJ;
dJdub = dJJ;
g_flag = 0;
cnt2 = cnt2 + 1;
if (perfb>perfa+alpha*lambda*dperfa)
lambda_diff = lambda_incr;
perf_hi = perfb;
else
dperfb = dJdub'*dX;
g_flag = 1;
if (dperfb<beta*dperfa)
lambda_lo = lambda;
lambda_diff = lambda_diff - lambda_incr;
perf_lo = perfb;
end
end
end
retcode = 0;
if (dperfb<beta*dperfa) %COULDN'T SATISFY BETA CONDITION
perfb = perf_lo;
lambda = lambda_lo;
up_delta = max(min(up + lambda*dX,max_i),min_i); % A priori iteration
u_vec(uvi) = up_delta(upi); % Insert updated controls
% CALCULATE PERFORMANCE AT NEW POINT
[JJ,dJJ]=calcjjdjj(u_vec,Ni,Nu,Nj,N2,Ai,Ts,ref,tiu,rho,dUtilde_dU,Normalize,minp,maxp);
perfb = JJ;
dJdub = dJJ;
g_flag = 0;
cnt2 = cnt2 + 1;
retcode = 3;
end
end
if (lambda*norm_dX>0.99*maxstep) % MAXIMUM STEP TAKEN
retcode = 2;
end
else
retcode = 0;
if (lambda*norm_dX>0.99*maxstep) % MAXIMUM STEP TAKEN
retcode = 2;
end
end
elseif (lambda<minlambda) % MINIMUM STEPSIZE REACHED
retcode = 1;
else % CONDITION ALPHA IS NOT SATISFIED - REDUCE THE STEP SIZE
if (start == 1)
% FIRST BACKTRACK, QUADRATIC FIT
lambda_temp = -dperfa/(2*(perfb - perfa - dperfa));
else
% LOCATE THE MINIMUM OF THE CUBIC INTERPOLATION
mat_temp = [1/lambda^2 -1/lambda_old^2; -lambda_old/lambda^2 lambda/lambda_old^2];
mat_temp = mat_temp/(lambda - lambda_old);
vec_temp = [perfb - perfa - dperfa*lambda; perfb_old - perfa - lambda_old*dperfa];
cub_coef = mat_temp*vec_temp;
c1 = cub_coef(1); c2 = cub_coef(2);
disc = c2^2 - 3*c1*dperfa;
if c1 == 0
lambda_temp = -dperfa/(2*c2);
else
lambda_temp = (-c2 + sqrt(disc))/(3*c1);
end
end
% CHECK TO SEE THAT LAMBDA DECREASES ENOUGH
if lambda_temp > up_lim*lambda
lambda_temp = up_lim*lambda;
end
% SAVE OLD VALUES OF LAMBDA AND FUNCTION DERIVATIVE
lambda_old = lambda;
perfb_old = perfb;
dJdub_old = dJdub;
upb_old=up_delta;
% CHECK TO SEE THAT LAMBDA DOES NOT DECREASE TOO MUCH
if lambda_temp < low_lim*lambda
lambda = low_lim*lambda;
else
lambda = lambda_temp;
end
% COMPUTE PERFORMANCE AND SLOPE AT NEW END POINT
up_delta = max(min(up + lambda*dX,max_i),min_i); % A priori iteration
u_vec(uvi) = up_delta(upi); % Insert updated controls
%----- Determine prediction yhat(t+k,up_delta) -----
[JJ,dJJ]=calcjjdjj(u_vec,Ni,Nu,Nj,N2,Ai,Ts,ref,tiu,rho,dUtilde_dU,Normalize,minp,maxp);
perfb = JJ;
dJdub = dJJ;
g_flag = 0;
cnt2 = cnt2 + 1;
end
start = 0;
end
if perfb<=perfb_old
J=perfb;
dJdu_old=dJdu;
dJdu=dJdub;
a = lambda;
else
J=perfb_old;
dJdu_old=dJdu;
dJdu=dJdub_old;
up_delta=upb_old;
a = lambda_old;
end
% CHANGE INITIAL STEP SIZE TO PREVIOUS STEP
delta=a;
if delta < delta_orig
delta = delta_orig;
end
if tol>delta/scale_tol
tol=delta/scale_tol;
end
retcode1 = [cnt1 cnt2 retcode];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -