📄 dde45.m
字号:
function [tout, xout]=dde45(xpfun,t0,tf,x0,initfun,tol)
%DDE45 Solves functional differential equations (systems with delays).
% DDE45 integrates a system of functional-differential equations using
% 4th and 5th order Runge-Kutta formulas.
% [tout,xout] = dde45(xpfun, t0, tf, x0, initfun) integrates the system
% of functional-differential equations described by the M-file XPRIME.M
% over the segment from t0 to tf, with the initial value x0 = x(t0)
% and the initial function y0(s) = x(t0+s) for s<0.
% [tout,xout] = dde45(xpfun, t0, tf, x0, initial, tol) uses tolerance tol.
%
% INPUT:
% xpfun - String containing name of user-supplied problem description.
% Call: xprime = fun(t,x,tt,xt,initfun) where xpfun = 'fun'.
% t - Time (scalar).
% x - Solution column-vector.
% tt - Time history array.
% xt - Values x corresponding to array tt.
% initfun - Initial function.
% xprime - Returned derivative column-vector.
% xprime(i) = dx(i)/dt.
% (For more details see descriptions.)
% t0 - Initial value of t.
% tf - Final value of t.
% x0 - Initial value column-vector.
% initfun - String variable with column-vector of initial function
% depending on variable s.
% tol - The desired accuracy. (by default: tol = 1.e-4).
%
% OUTPUT:
% tout - Returned integration time points (column-vector).
% xout - Returned solution, one solution vector per tout-value.
%
% The result can be displayed by: plot(tout, xout).
%
% See also dde45lin.
% Check the integration segment
if tf <= t0
error('The final point of integration must be greater than initial one');
end;
% The Fehlberg coefficients:
alpha = [1/4 3/8 12/13 1 1/2]';
beta = [ [ 1 0 0 0 0 0]/4
[ 3 9 0 0 0 0]/32
[ 1932 -7200 7296 0 0 0]/2197
[ 8341 -32832 29440 -845 0 0]/4104
[-6080 41040 -28352 9295 -5643 0]/20520 ]';
gamma = [ [902880 0 3953664 3855735 -1371249 277020]/7618050
[ -2090 0 22528 21970 -15048 -27360]/752400 ]';
pow = 1/5;
if nargin < 6, tol = 1.e-4; end
% Initialization
t = t0;
hmax = (tf - t)/16;
h = hmax/8;
x = x0(:);
f = zeros(length(x),6);
chunk = 128;
tout = zeros(chunk,1);
xout = zeros(chunk,length(x));
k = 1;
tout(k) = t;
xout(k,:) = x.';
% The main loop
while (t < tf) & (t + h > t)
if t + h > tf, h = tf - t; end
% Compute the slopes
temp = feval(xpfun,t,x,tout(1:k),xout(1:k,:),initfun);
f(:,1) = temp(:);
for j = 1:5
temp = feval(xpfun,t+alpha(j)*h,x+h*f*beta(:,j),...
tout(1:k),xout(1:k,:),initfun);
f(:,j+1) = temp(:);
end
% Estimate the error and the acceptable error
delta = norm(h*f*gamma(:,2),'inf');
tau = tol*max(norm(x,'inf'),1.0);
% Update the solution only if the error is acceptable
if delta <= tau
t = t + h;
x = x + h*f*gamma(:,1);
k = k+1;
if k > length(tout)
tout = [tout; zeros(chunk,1)];
xout = [xout; zeros(chunk,length(x))];
end
tout(k) = t;
xout(k,:) = x.';
end
% Update the step size
if delta ~= 0.0
h = min(hmax, 0.8*h*(tau/delta)^pow);
end
end
if (t < tf)
disp('Singularity likely.')
t
end
tout = tout(1:k);
xout = xout(1:k,:);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -