⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jfdctflt.c

📁 linux下的jpeg解码库
💻 C
字号:
/* * jfdctflt.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a floating-point implementation of the * forward DCT (Discrete Cosine Transform). * * This implementation should be more accurate than either of the integer * DCT implementations.  However, it may not give the same results on all * machines because of differences in roundoff behavior.  Speed will depend * on the hardware's floating point capacity. * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column.  Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README).  The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs.  These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries.  The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with a fixed-point * implementation, accuracy is lost due to imprecise representation of the * scaled quantization values.  However, that problem does not arise if * we use floating point arithmetic. */#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"		/* Private declarations for DCT subsystem */#ifdef DCT_FLOAT_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * Perform the forward DCT on one block of samples. */GLOBAL(void)jpeg_fdct_float (FAST_FLOAT * data){  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;  FAST_FLOAT *dataptr;  int ctr;  /* Pass 1: process rows. */  dataptr = data;  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {    tmp0 = dataptr[0] + dataptr[7];    tmp7 = dataptr[0] - dataptr[7];    tmp1 = dataptr[1] + dataptr[6];    tmp6 = dataptr[1] - dataptr[6];    tmp2 = dataptr[2] + dataptr[5];    tmp5 = dataptr[2] - dataptr[5];    tmp3 = dataptr[3] + dataptr[4];    tmp4 = dataptr[3] - dataptr[4];        /* Even part */        tmp10 = tmp0 + tmp3;	/* phase 2 */    tmp13 = tmp0 - tmp3;    tmp11 = tmp1 + tmp2;    tmp12 = tmp1 - tmp2;        dataptr[0] = tmp10 + tmp11; /* phase 3 */    dataptr[4] = tmp10 - tmp11;        z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */    dataptr[2] = tmp13 + z1;	/* phase 5 */    dataptr[6] = tmp13 - z1;        /* Odd part */    tmp10 = tmp4 + tmp5;	/* phase 2 */    tmp11 = tmp5 + tmp6;    tmp12 = tmp6 + tmp7;    /* The rotator is modified from fig 4-8 to avoid extra negations. */    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */    z11 = tmp7 + z3;		/* phase 5 */    z13 = tmp7 - z3;    dataptr[5] = z13 + z2;	/* phase 6 */    dataptr[3] = z13 - z2;    dataptr[1] = z11 + z4;    dataptr[7] = z11 - z4;    dataptr += DCTSIZE;		/* advance pointer to next row */  }  /* Pass 2: process columns. */  dataptr = data;  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];        /* Even part */        tmp10 = tmp0 + tmp3;	/* phase 2 */    tmp13 = tmp0 - tmp3;    tmp11 = tmp1 + tmp2;    tmp12 = tmp1 - tmp2;        dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */    dataptr[DCTSIZE*4] = tmp10 - tmp11;        z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */    dataptr[DCTSIZE*6] = tmp13 - z1;        /* Odd part */    tmp10 = tmp4 + tmp5;	/* phase 2 */    tmp11 = tmp5 + tmp6;    tmp12 = tmp6 + tmp7;    /* The rotator is modified from fig 4-8 to avoid extra negations. */    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */    z11 = tmp7 + z3;		/* phase 5 */    z13 = tmp7 - z3;    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */    dataptr[DCTSIZE*3] = z13 - z2;    dataptr[DCTSIZE*1] = z11 + z4;    dataptr[DCTSIZE*7] = z11 - z4;    dataptr++;			/* advance pointer to next column */  }}#endif /* DCT_FLOAT_SUPPORTED */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -