📄 distance_normalised.m
字号:
function N = distance_normalised(v, S)
%function N = distance_normalised(v, S)
%
% INPUTS:
% v - set of innovation vectors
% S - innovation covariance matrix
%
% OUTPUTS:
% N - normalised distance: v'*inv(S)*v + log(det(S))
%
% NOTES:
% The normalised distance is derived from the Gaussian likelihood
% function, and is proportional to the negative log-likelihood. It
% is obtained by taking logs, multiplying by -2 and subtracting D*log(2*pi)
% where D is the dimension of v.
%
% N = -2*gauss_likelihood(v,S,1) - size(v,1)*log(2*pi);
%
% It is often used as a metric for "nearest neighbours" data association
% (eg, see S.S. Blackman and R. Popoli. "Design and Analysis of Modern Tracking
% Systems". Artech House Radar Library, 1999).
%
% Tim Bailey 2005.
Sc = chol(S)';
nv = Sc\v;
N = sum(nv.*nv, 1) + 2*sum(log(diag(Sc)));
% Alternatives:
% N = distance_mahalanobis(v, S) + log(det(S));
% N = -2*gauss_likelihood(v,S,1) - size(v,1)*log(2*pi);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -