📄 distance_kld.m
字号:
function K = distance_KLD(v, P, Q)
%function K = distance_KLD(v, P, Q)
%
% INPUTS:
% v - difference between two means v = p - q
% P, Q - covariance matrices
%
% OUTPUT:
% K - Kullback Leibler divergence (relative entropy) between two Gaussians.
%
% References:
% Jacob Goldberger and Sam Roweis, Hierarchical Clustering of a Mixture Model,
% Neural Information Processing Systems, 2004.
% http://www.cs.toronto.edu/~roweis/publications.html
%
% Shaohua Kevin Zhou and Rama Chellappa, From sample similarity to ensemble
% similarity: Probabilistic distance measures in reproducing kernel Hilbert
% space. IEEE Transactions on Pattern Analysis and Machine Intelligence (to
% appear). http://www.umiacs.umd.edu/~shaohua/publications.html
%
% Tim Bailey 2005.
Qi = inv(Q);
D = size(P,1);
K1 = v'*Qi*v;
K2 = log(det(Q)/det(P));
K3 = trace(Qi*P);
K = 0.5*(K1 + K2 + K3 - D);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -