📄 numerical_jacobian.m
字号:
function J = numerical_Jacobian(x, model, dmodel, offset, varargin)
% J = numerical_Jacobian(x, model, dmodel, offset, ...)
%
% INPUTS:
% x - state
% model - function handle for non-linear model: either ('myfunc') or (@myfunc).
% dmodel - function handle for model residuals: e = dmodel(y1, y2)
% offset - small increment to generate numerical tangent. If passed [], uses default value.
% ... - optional arguments such that model has form: y = model(x, ...)
%
% OUTPUT:
% J - Jacobian of y with respect x.
%
% NOTES:
% 1. This function computes an approximate Jacobian for a non-linear model.
%
% 2. The 'dmodel' is necessary to deal with discontinuous models, where the true residuals do
% not match the difference in two values. A classic example is the difference between two normalised
% polar values. If you have a continuous model, or a model with a trivial residual, you may simply
% pass [] to 'dmodel'.
%
% Tim Bailey 2004.
if isempty(offset), offset = 1e-9; end
if isempty(dmodel), dmodel = @default_dmodel; end
y = feval(model, x, varargin{:});
lenx = length(x);
leny = length(y);
xt = x;
J = zeros(leny,lenx);
for i=1:lenx
xt(i) = x(i) + offset;
yt = feval(model, xt, varargin{:});
dy = feval(dmodel, yt, y);
J(:,i) = dy/offset;
xt(i) = x(i);
end
%
%
function e = default_dmodel(x1, x2)
e = x1 - x2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -