📄 contents.m
字号:
% Tim Bailey's MatLab Utilities
% Version 3.2, September, 2007.
%
% http://www-personal.acfr.usyd.edu.au/tbailey/
%
% assert - Invariant checking function
% chi_square_bound - Compute the n-degree-of-freedom chi-squared bound for a given probability of acceptance
% chi_square_density - Evaluate an n-degree-of-freedom chi-squared probability density function
% chi_square_mass - Evaluate an n-degree-of-freedom chi-squared probability mass function
% chi_square_to_gauss - Convert a chi-squared bound to a Gaussian likelihood
% covariance_intersection-Fuse two Gaussians using the CI algorithm
% demo_bearing_only - Demonstrate bearing-only tracking with EKF, UKF, and particle filter
% demo_chi_square - Demonstrate chi-square functions
% demo_ekf_filter - Demonstrate extended Kalman filter (EKF) functions
% demo_kmeans - Demonstrate k-means clustering algorithm
% demo_particle_filter - Demonstrate particle filter functions
% demo_unscented_filter - Demonstrate unscented Kalman filter (UKF) functions
% dist_sqr - Compute the squared distance between two sets of vectors (version 1)
% dist_sqr_ - Compute the squared distance between two sets of vectors (version 2)
% distance_bhattacharyya- Compute Bhattacharyya distance between two Gaussians
% distance_KLD - Compute Kullback-Leibler distance between two Gaussians
% distance_KLD_symmetric- Compute symmetric Kullback-Leibler distance between two Gaussians
% distance_mahalanobis - Compute Mahalanobis distance between two Gaussians
% distance_normalised - Compute normalised distance between two Gaussians
% EKF_update - Perform extended Kalman update with numerical-approximate observation Jacobian, H
% ellipse_sigma - Compute the n-sigma ellipse of a 2-D Gaussian (same as sigma_ellipse)
% ellipse_mass - Compute ellipsoid bound about N% probability mass of a 2-D Gaussian
% gauss_entropy - Compute the distribution entropy of a Gaussian
% gauss_evaluate - Evaluate a Gaussian pointwise (same as gauss_likelihood)
% gauss_likelihood - Compute the likelihoods for a set of Gaussian innovations
% gauss_power - Raise a Gaussian to a positive real power
% gauss_regularise - Produce a set of regularised samples jittered according to a Gaussian kernel
% gauss_samples - Produce a set of samples from a specified multivariate Gaussian density
% index_table - Vectorise a set of indices into a hyper-dimensional matrix for fast access
% inv_posdef - Compute the inverse of a positive-definite matrix (numerically stable)
% inv_pseudo - Compute the Moore-Penrose pseudo-inverse of a matrix
% KF_update - Perform a Kalman filter update (recommended form)
% KF_update_cholesky - Perform a Kalman filter update using Cholesky factored implementation (numerically stable)
% KF_update_IEKF - Perform an iterated extended Kalman filter (IEKF) update
% KF_update_joseph - Perform a Joseph-form Kalman filter update (ensures symmetry and positive definiteness)
% KF_update_simple - Perform a Kalman filter update (basic implementation)
% kmeans - Perform k-means clustering
% line_plot_conversion - Convert a set of lines to a representation suitable for fast animation
% multivariate_gauss - Same as gauss_samples
% numerical_Jacobian - Approximate the Jacobian matrix for a non-linear model, forward differencing
% numerical_Jacobian_cd - Approximate the Jacobian matrix for a non-linear model, central differencing
% pi_to_pi - Normalise a set of angles to within +/- pi bounds
% repcol - Replicate a column-vector
% reprow - Replicate a row-vector
% repvec - Replicate a column-vector (same as repcol)
% sample_mean - Compute the mean and variance of a set of samples
% sample_mean_weighted - Compute the mean and variance of a set of weighted samples
% sigma_ellipse - Compute the n-sigma ellipse of a 2-D mean and covariance matrix
% sqrt_posdef - Compute square-root of a positive definite matrix
% stratified_random - Generate an ordered set of stratified uniform-random numbers
% stratified_resample - Perform resampling of weighted particles
% transform_to_global - Transform a set of 2-D points or poses to a global coordinate frame
% transform_to_relative - Transform a set of 2-D points or poses to a local coordinate frame
% uniform_random - Generate an ordered set of uniform-random numbers
% unscented_transform - Perform an unscented transform of a Gaussian density function through a non-linear function
% unscented_update - Perform an unscented Kalman filter (UKF) update
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -