📄 distance_mahalanobis.m
字号:
function M = distance_mahalanobis(v,S)
%function M = distance_mahalanobis(v,S)
%
% INPUTS:
% v - a set of innovation vectors.
% S - the covariance matrix for the innovations.
%
% OUTPUT:
% M - set of Mahalanobis distances for each v(:,i).
%
% Tim Bailey 2005.
Sc = chol(S)';
nv = Sc\v; % "normalised innovation", equivalent to writing inv(Sc)*v
M = sum(nv.*nv, 1);
% Note: writing sum(x.*x, 1) is a fast way to compute sets of inner-products.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -