📄 landmark_isomap.m
字号:
function [mappedX, mapping] = landmark_isomap(X, no_dims, k, percentage); %ISOMAP Runs the Isomap algorithm%% [mappedX, mapping] = landmark_isomap(X, no_dims, k, percentage); %% The functions runs the Landmark Isomap algorithm on dataset X to reduce the% dimensionality of the dataset to no_dims. The number of neighbors used in% the compuations is set by k (default = 12). The variable percentage has to be% between 0 and 1, and determines the number of landmarks that is used (default = 0.2).%% If the neighborhood graph that is constructed is not completely% connected, only the largest connected component is embedded. The indices% of this component are returned in mapping.conn_comp.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.3b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author.%% (C) Laurens van der Maaten% Maastricht University, 2007 if ~exist('no_dims', 'var') no_dims = 2; end if ~exist('k', 'var') k = 12; end if ~exist('percentage', 'var') percentage = 0.2; end % Construct neighborhood graph disp('Constructing neighborhood graph...'); D = find_nn(X, k); % Select largest connected component blocks = components(D)'; count = zeros(1, max(blocks)); for i=1:max(blocks) count(i) = length(find(blocks == i)); end [count, block_no] = max(count); conn_comp = find(blocks == block_no); D = D(conn_comp,:); D = D(:,conn_comp); n = size(D, 1); % Compute shortest paths disp('Computing shortest paths...'); landmarks = randperm(n); landmarks = landmarks(1:round(percentage * n)); nl = length(landmarks); D = dijkstra(D, landmarks); D = full(D)'; % Do not embed in more dimensions than (nl - 1) if no_dims > nl - 1 no_dims = nl - 1; warning(['Target dimensionality reduced to ' num2str(no_dims) '...']); end % Performing MDS using eigenvector implementation disp('Constructing low-dimensional embedding...'); subB = -.5 * (D.^2 - sum(D'.^2)'*(ones(1, nl)/nl) - ones(n, 1)*(sum(D.^2)/n) + sum(sum(D.^2))/(n*nl)); subB2 = subB' * subB; subB2(isnan(subB2)) = 0; subB2(isinf(subB2)) = 0; [alpha, beta] = eig(subB2); val = beta .^ (1 / 2); vec = subB * alpha * inv(val); if size(vec, 2) < no_dims no_dims = size(vec, 2); warning(['Target dimensionality reduced to ' num2str(no_dims) '...']); end % Computing final embedding h = real(diag(val)); [foo, sorth] = sort(h, 'descend'); val = real(diag(val(sorth, sorth))); vec = vec(:,sorth); mappedX = real(vec(:,1:no_dims) .* (ones(n, 1) * sqrt(val(1:no_dims))')); % Store data for out-of-sample extension mapping.conn_comp = conn_comp; mapping.k = k; mapping.X = X(conn_comp,:); mapping.D = D; mapping.vec = vec; mapping.val = val;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -