📄 lda.m
字号:
function [mappedX, mapping] = lda(X, labels, no_dims)%KERNEL_PCA Perform the kernel PCA algorithm%% [mappedX, mapping] = lda(X, labels, no_dims)%% The function runs PCA on a set of datapoints X. The variable% no_dims sets the number of dimensions of the feature points in the % embedded feature space (no_dims >= 1, default = 2). % For no_dims, you can also specify a number between 0 and 1, determining % the amount of variance you want to retain in the PCA step.% The function returns the locations of the embedded trainingdata in % mappedX. Furthermore, it returns information on the mapping in mapping.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.3b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author.%% (C) Laurens van der Maaten% Maastricht University, 2007 if ~exist('no_dims', 'var') no_dims = 2; end % Make sure data is zero mean mapping.mean = mean(X, 1); X = X - repmat(mapping.mean, [size(X, 1) 1]); % Make sure labels are nice [classes, bar, labels] = unique(labels); nc = length(classes); % Intialize Sw and Sb Sw = zeros(size(X, 2), size(X, 2)); Sb = zeros(size(X, 2), size(X, 2)); % Compute total covariance matrix St = cov(X); % Sum over classes for i=1:nc % Get all instances with class i cur_X = X(labels == i,:); % Update within-class scatter C = cov(cur_X); p = size(cur_X, 1) / length(labels); Sw = Sw + (p * C); end % Compute between class scatter Sb = St - Sw; Sb(isnan(Sb)) = 0; Sw(isnan(Sw)) = 0; Sb(isinf(Sb)) = 0; Sw(isinf(Sw)) = 0; % Make sure not to embed in too high dimension if nc <= no_dims no_dims = nc - 1; warning(['Target dimensionality reduced to ' num2str(no_dims) '.']); end % Perform eigendecomposition of inv(Sw)*Sb [M, lambda] = eig(Sb, Sw); % Sort eigenvalues and eigenvectors in descending order lambda(isnan(lambda)) = 0; [lambda, ind] = sort(diag(lambda), 'descend'); M = M(:,ind(1:min([no_dims size(M, 2)]))); % Compute mapped data mappedX = X * M; % Store mapping for the out-of-sample extension mapping.M = M;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -