⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clustering - 咨询之路 - 博客园.htm

📁 这里包含了聚类的工具箱还有很详细的文档说明
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<CENTER>
<TABLE cellSpacing=1 bgColor=#ffffff border=1>
  <TBODY>
  <TR>
    <TD><STRONG><EM>k</EM>-means Algorithm:<BR></STRONG>
      <OL>
        <LI>Select <EM>k</EM> clusters arbitrarily. 
        <LI>Initialize cluster centers with those <EM>k</EM> clusters. 
        <LI>Do loop<BR>&nbsp;&nbsp;a) Partition by assigning or reassigning all 
        data objects to their closest cluster center.<BR>&nbsp;&nbsp;b) Compute 
        new cluster centers as mean value of the objects in each 
        cluster.<BR>Until no change in cluster center calculation 
  </LI></OL></TD></TR></TBODY></TABLE>Figure 1: <EM>k</EM>-means Algorithm 
</CENTER>
<CENTER><BR><BR><IMG alt="" src="Clustering - 咨询之路 - 博客园.files/ClusterEg.gif" 
border=1> <BR>Figure 2: Sample Data </CENTER>
<BLOCKQUOTE><STRONG>Example:</STRONG> Suppose we are given the data in Figure 
  2 as input and we choose <EM>k</EM>=2 and the Manhattan distance function 
  <EM>dis</EM> = 
  |<EM>x<SUB></SUB>-<EM>x</EM><SUB>1</SUB>|+|<EM>y<SUB></SUB>-<EM>y</EM><SUB>1</SUB>|. 
  The detailed computation is as follows: <BR><BR>Step 1. Initialize <EM>k</EM> 
  partitions. An initial partition can be formed by first specifying a set of 
  <EM>k</EM> seed points. The seed points could be the first <EM>k</EM> objects 
  or <EM>k</EM> objects chosen randomly from the input objects. We choose the 
  first two objects as seed points and initialize the clusters as 
  <EM>C</EM><SUB>1</SUB>={(0,0)} and <EM>C</EM><SUB>2</SUB>={(0,1)}. <BR>Step 2. 
  Since there is only one point in each cluster, that point is the cluster 
  center. <BR>Step 3a. Calculate the distance between each object and each 
  cluster center, assigning the object to the closest 
  cluster.<BR>&nbsp;&nbsp;&nbsp;&nbsp;For example, for the third 
  object:<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<EM>dis</EM>(1,3) = 
  |1-0| + |1-0| = 2 
  and<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<EM>dis</EM>(2,3) = 
  |1-0| + |1-1| = 1,<BR>&nbsp;&nbsp;&nbsp;&nbsp;so this object is assigned to 
  <EM>C</EM><SUB>2</SUB>.<BR>&nbsp;&nbsp;&nbsp;&nbsp;The fifth object is 
  equidistant from both clusters, so we arbitrarily assign it to 
  <EM>C</EM><SUB>1</SUB>.<BR>&nbsp;&nbsp;&nbsp;&nbsp;After calculating the 
  distance for all points, the clusters contain the following 
  objects:<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<EM>C</EM><SUB>1</SUB> 
  = {(0,0),(1,0),(0.5,0.5)} 
  and<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<EM>C</EM><SUB>2</SUB> 
  = {(0,1),(1,1),(5,5),(5,6),(6,6),(6,5),(5.5,5.5)}. <BR>Step 3b. Compute new 
  cluster center for each cluster.<BR>&nbsp;&nbsp;&nbsp;&nbsp;New center for 
  <EM>C</EM><SUB>1</SUB> = 
  (0.5,0.16)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(0+1+0.5)/3 = 
  0.5<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(0+0+0.5)/3 = 
  0.16<BR>&nbsp;&nbsp;&nbsp;&nbsp;New center for <EM>C</EM><SUB>2</SUB> = 
  (4.1,4.2)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(0+1+5+5+6+6+5.5)/7 
  = 4.1<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1+1+5+5+6+6+5.5)/7 = 
  4.2 <BR>Step 3a′. New centers <EM>C</EM><SUB>1</SUB> = (0.5,0.16) and 
  <EM>C</EM><SUB>2</SUB> = (4.1,4.2) differ from old centers 
  <EM>C</EM><SUB>1</SUB>={(0,0)} and <EM>C</EM><SUB>2</SUB>={(0,1)}, so the loop 
  is repeated. <BR>&nbsp;&nbsp;&nbsp;&nbsp;Reassign the ten objects to the 
  closest cluster center, resulting 
  in:<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<EM>C</EM><SUB>1</SUB> 
  = 
  {(0,0),(0,1),(1,1),(1,0),(0.5,0.5)}<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<EM>C</EM><SUB>2</SUB> 
  = {(5,5),(5,6),(6,6),(6,5),(5.5,5.5)} <BR>Step 3b′. Compute new cluster center 
  for each cluster<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;New center for 
  <EM>C</EM><SUB>1</SUB> = (0.5,0.5)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;New 
  center for <EM>C</EM><SUB>2</SUB> = (5.5,5.5) <BR>Step 3a′′. New centers 
  <EM>C</EM><SUB>1</SUB> = (0.5,0.5) and <EM>C</EM><SUB>2</SUB> = (5.5,5.5) 
  differ from old centers <EM>C</EM><SUB>1</SUB> = (0.5,0.16) and 
  <EM>C</EM><SUB>2</SUB> = (4.1,4.2), so the loop is repeated. 
  <BR>&nbsp;&nbsp;&nbsp;&nbsp;Reassign the ten objects to the closest cluster 
  center. Result is same as in Step 5. <BR>Step 3b′′. Compute new cluster 
  centers. <BR>Algorithm is done: Centers are the same as in Step 3b′, so 
  algorithm is finished. Result is same as in 3b′. 
</EM>2</EM>2</BLOCKQUOTE><BR><FONT size=+2><STRONG>Agglomerative Hierarchical 
Algorithm</STRONG></FONT> 
<P>Hierarchical algorithms can be either agglomerative or divisive, that is 
top-down or bottom-up. All <STRONG><EM>agglomerative hierarchical clustering 
algorithms</EM></STRONG> begin with each object as a separate group. These 
groups are successively combined based on similarity until there is only one 
group remaining or a specified termination condition is satisfied. For 
<EM>n</EM> objects, <EM>n</EM>-1 mergings are done. <STRONG><EM>Hierarchical 
algorithms</EM> are rigid in that once a merge has been done, it cannot be 
undone. Although there are smaller computational costs with this, it can also 
cause problems if an erroneous merge is done. As such, merge points need to be 
chosen carefully. Here we describe a simple agglomerative clustering algorithm. 
More complex algorithms have been developed, such as BIRCH and CURE, in an 
attempt to improve the clustering quality of hierarchical algorithms. 
</STRONG></P>
<CENTER><BR><IMG alt="" src="Clustering - 咨询之路 - 博客园.files/Hierarch.gif" 
border=1> <BR>Figure 3: Sample Dendogram <BR><BR></CENTER>
<P>In the context of hierarchical clustering, the hierarchy graph is called a 
<STRONG><EM>dendogram</EM>. Figure 3 shows a sample dendogram that could be 
produced from a hierarchical clustering algorithm. Unlike with the 
<EM>k</EM>-means algorithm, the number of clusters (<EM>k</EM>) is not specified 
in hierarchical clustering. After the hierarchy is built, the user can specify 
the number of clusters required, from 1 to <EM>n</EM>. The top level of the 
hierarchy represents one cluster, or <EM>k</EM>=1. To examine more clusters, we 
simply need to traverse down the hierarchy. <BR><BR></STRONG></P>
<CENTER>
<TABLE cellSpacing=0 bgColor=#ffffff border=1>
  <TBODY>
  <TR>
    <TD width=400><STRONG>Agglomerative Hierarchical Algorithm:</STRONG> 
      <BR><BR><STRONG>Given:</STRONG><BR>&nbsp;&nbsp;&nbsp;&nbsp; A set 
      <EM>X</EM> of objects 
      {<EM>x</EM><SUB>1</SUB>,...,<EM>x<SUB>n</SUB></EM>}<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
      A distance function 
      <EM>dis</EM>(<EM>c</EM><SUB>1</SUB>,<EM>c</EM><SUB>2</SUB>)<BR>
      <OL>
        <LI><STRONG>for</STRONG> <EM>i</EM> = 1 to 
        <EM>n</EM><BR>&nbsp;&nbsp;&nbsp;&nbsp;<EM>c<SUB>i</SUB></EM> = 
        {<EM>x<SUB>i</SUB></EM>}<BR><STRONG>end for</STRONG><BR>
        <LI><EM>C</EM> = {<EM>c</EM><SUB>1</SUB>,...,<EM>c<SUB>b</SUB></EM>}<BR>
        <LI><EM>l</EM> = <EM>n</EM>+1<BR>
        <LI><STRONG>while</STRONG> <EM>C</EM>.size &gt; 1 
        <STRONG>do</STRONG><BR>&nbsp;&nbsp;a) 
        (<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = minimum 
        <EM>dis</EM>(<EM>c<SUB>i</SUB></EM>,<EM>c<SUB>j</SUB></EM>) for all 
        <EM>c<SUB>i</SUB></EM>,<EM>c<SUB>j</SUB></EM> in 
        <EM>C</EM><BR>&nbsp;&nbsp;b) remove <EM>c<SUB>min</SUB> and 
        <EM>c<SUB>min</SUB> from <EM>C</EM><BR>&nbsp;&nbsp;c) add 
        {<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>} to 
        <EM>C</EM><BR>&nbsp;&nbsp;d) <EM>l</EM> = <EM>l</EM> + 1<BR><STRONG>end 
        while</STRONG> </EM>2</EM>1</EM>2</EM>1</EM>2</EM>1 
  </LI></OL></TD></TR></TBODY></TABLE>Figure 4: Agglomerative Hierarchical 
Algorithm </CENTER>
<P>Figure 4 shows a simple hierarchical algorithm. The distance function in this 
algorithm can determine similarity of clusters through many methods, including 
single link and group-average. <STRONG><EM>Single link</EM> calculates the 
distance between two clusters as the shortest distance between any two objects 
contained in those clusters. <STRONG><EM>Group-average</EM> first finds the 
average values for all objects in the group (i.e., cluster) and the calculates 
the distance between clusters as the distance between the average values. 
</STRONG></STRONG></P>
<P>Each object in <EM>X</EM> is initially used to create a cluster containing a 
single object. These clusters are successively merged into new clusters, which 
are added to the set of clusters, <EM>C</EM>. When a pair of clusters is merged, 
the original clusters are removed from <EM>C</EM>. Thus, the number of clusters 
in <EM>C</EM> decreases until there is only one cluster remaining, containing 
all the objects from <EM>X</EM>. The hierarchy of clusters is implicity 
represented in the nested sets of <EM>C</EM>. </P>
<BLOCKQUOTE><STRONG>Example:</STRONG> Suppose the input to the simple 
  agglomerative algorithm described above is the set <EM>X</EM>, shown in Figure 
  5 represented in matrix and graph form. We will use the Manhattan distance 
  function and the single link method for calculating distance between clusters. 
  The set <EM>X</EM> contains <EM>n</EM>=10 elements, <EM>x</EM><SUB>1</SUB> to 
  <EM>x</EM><SUB>10</SUB>, where <EM>x</EM><SUB>1</SUB>=(0,0). <BR>
  <CENTER><IMG alt="" src="Clustering - 咨询之路 - 博客园.files/Grapheg.gif" border=1> 
  <BR>Figure 5: Sample Data </CENTER><BR><BR><BR>Step 1. Initially, each element 
  <EM>x<SUB>i</SUB></EM> of <EM>X</EM> is placed in a cluster 
  <EM>c<SUB>i</SUB></EM>, where <EM>c<SUB>i</SUB></EM> is a member of the set of 
  clusters <EM>C</EM>. <BR>&nbsp;&nbsp;&nbsp;&nbsp;<EM>C</EM> = 
  {{<EM>x</EM><SUB>1</SUB>},{<EM>x</EM><SUB>2</SUB>},{<EM>x</EM><SUB>3</SUB>}, 
  {<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>6</SUB>},{<EM>x</EM><SUB>7</SUB>}, 
  {<EM>x</EM><SUB>8</SUB>},{<EM>x</EM><SUB>9</SUB>},{<EM>x</EM><SUB>10</SUB>}} 
  <BR><BR>Step 2. Set <EM>l</EM> = 11. <BR><BR>Step 3. (First iteration of while 
  loop) <EM>C</EM>.size = 10 
  <UL>
    <LI>The minimum single link distance between two clusters is 1. This occurs 
    in two places, between <EM>c</EM><SUB>2</SUB> and <EM>c</EM><SUB>10</SUB> 
    and between <EM>c</EM><SUB>3</SUB> and <EM>c</EM><SUB>10</SUB>. 
    <BR>Depending on how our minimum function works we can choose either pair of 
    clusters. Arbitrarily we choose the first. <BR>&nbsp;&nbsp;&nbsp;&nbsp; 
    (<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>2</SUB>,<EM>c</EM><SUB>10</SUB>) </EM>2</EM>1 
    <LI>Since <EM>l</EM> = 10, <EM>c</EM><SUB>11</SUB> = <EM>c</EM><SUB>2</SUB> 
    <FONT face=arial>U</FONT> <EM>c</EM><SUB>10</SUB> = 
    {{<EM>x</EM><SUB>2</SUB>},{<EM>x</EM><SUB>10</SUB>}} 
    <LI>Remove <EM>c</EM><SUB>2</SUB> and <EM>c</EM><SUB>10</SUB> from 
    <EM>C</EM>. 
    <LI>Add <EM>c</EM><SUB>11</SUB> to <EM>C</EM>. <BR>&nbsp;&nbsp;&nbsp;&nbsp; 
    <EM>C</EM> = {{<EM>x</EM><SUB>1</SUB>},{<EM>x</EM><SUB>3</SUB>}, 
    {<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>6</SUB>},{<EM>x</EM><SUB>7</SUB>}, 
    {<EM>x</EM><SUB>8</SUB>},{<EM>x</EM><SUB>9</SUB>},{{<EM>x</EM><SUB>2</SUB>}, 
    {<EM>x</EM><SUB>10</SUB>}}} 
    <LI>Set <EM>l</EM> = <EM>l</EM> + 1 = 12 </LI></UL>Step 3. (Second iteration) 
  <EM>C</EM>.size = 9 
  <UL>
    <LI>The minimum single link distance between two clusters is 1. This occurs 
    between, between <EM>c</EM><SUB>3</SUB> and <EM>c</EM><SUB>11</SUB> because 
    the distance between <EM>x</EM><SUB>3</SUB> and <EM>x</EM><SUB>10</SUB> is 
    1, where <EM>x</EM><SUB>10</SUB> is in <EM>c</EM><SUB>11</SUB>. 
    <BR>&nbsp;&nbsp;&nbsp;&nbsp; (<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>3</SUB>,<EM>c</EM><SUB>11</SUB>) </EM>2</EM>1 
    <LI><EM>c</EM><SUB>12</SUB> = <EM>c</EM><SUB>3</SUB> <FONT 
    face=arial>U</FONT> <EM>c</EM><SUB>11</SUB> = 
    {{{<EM>x</EM><SUB>2</SUB>},{<EM>x</EM><SUB>10</SUB>}},{<EM>x</EM><SUB>3</SUB>}} 

    <LI>Remove <EM>c</EM><SUB>3</SUB> and <EM>c</EM><SUB>11</SUB> from 
    <EM>C</EM>. 
    <LI>Add <EM>c</EM><SUB>12</SUB> to <EM>C</EM>. <BR>&nbsp;&nbsp;&nbsp;&nbsp; 
    <EM>C</EM> = {{<EM>x</EM><SUB>1</SUB>}, 
    {<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>6</SUB>},{<EM>x</EM><SUB>7</SUB>}, 
    {<EM>x</EM><SUB>8</SUB>},{<EM>x</EM><SUB>9</SUB>},{{{<EM>x</EM><SUB>2</SUB>}, 
    {<EM>x</EM><SUB>10</SUB>}}, {<EM>x</EM><SUB>3</SUB>}}} 
    <LI>Set <EM>l</EM> = 13 </LI></UL>Step 3. (Third iteration) <EM>C</EM>.size = 
  8 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>1</SUB>,<EM>c</EM><SUB>12</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = 
    {{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>6</SUB>},{<EM>x</EM><SUB>7</SUB>}, 
    {<EM>x</EM><SUB>8</SUB>},{<EM>x</EM><SUB>9</SUB>},{{{{<EM>x</EM><SUB>2</SUB>}, 
    {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}}} </LI></UL>Step 3. (Fourth 
  iteration) <EM>C</EM>.size = 7 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>4</SUB>,<EM>c</EM><SUB>8</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = 
    {{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>6</SUB>},{<EM>x</EM><SUB>7</SUB>}, 
    {<EM>x</EM><SUB>9</SUB>},{{{{<EM>x</EM><SUB>2</SUB>}, 
    {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}},{{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>8</SUB>}}} 
    </LI></UL>Step 3. (Fifth iteration) <EM>C</EM>.size = 6 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>5</SUB>,<EM>c</EM><SUB>7</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = {{<EM>x</EM><SUB>6</SUB>}, 
    {<EM>x</EM><SUB>9</SUB>},{{{{<EM>x</EM><SUB>2</SUB>}, 
    {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}},{{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>8</SUB>}}, 
    {{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>7</SUB>}}} </LI></UL>Step 3. (Sixth 
  iteration) <EM>C</EM>.size = 5 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>9</SUB>,<EM>c</EM><SUB>13</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = {{<EM>x</EM><SUB>6</SUB>}, 
    {{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>8</SUB>}}, 
    {{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>7</SUB>}},{{{{{<EM>x</EM><SUB>2</SUB>}, 
    {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}},{<EM>x</EM><SUB>9</SUB>}}} 
    </LI></UL>Step 3. (Seventh iteration) <EM>C</EM>.size = 4 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>6</SUB>,<EM>c</EM><SUB>15</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = {{{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>8</SUB>}}, 
    {{{{{<EM>x</EM><SUB>2</SUB>}, {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}},{<EM>x</EM><SUB>9</SUB>}},{{<EM>x</EM><SUB>6</SUB>}, 
    {{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>7</SUB>}}}} </LI></UL>Step 3. 
  (Eighth iteration) <EM>C</EM>.size = 3 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>14</SUB>,<EM>c</EM><SUB>16</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = { {{<EM>x</EM><SUB>6</SUB>}, 
    {{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>7</SUB>}}}, 
    {{{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>8</SUB>}}, 
    {{{{{<EM>x</EM><SUB>2</SUB>}, {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}},{<EM>x</EM><SUB>9</SUB>}}}} 
    </LI></UL>Step 3. (Ninth iteration) <EM>C</EM>.size = 2 
  <UL>
    <LI>(<EM>c<SUB>min</SUB>,<EM>c<SUB>min</SUB>) = 
    (<EM>c</EM><SUB>17</SUB>,<EM>c</EM><SUB>18</SUB>) </EM>2</EM>1 
    <LI><EM>C</EM> = {{{{<EM>x</EM><SUB>4</SUB>},{<EM>x</EM><SUB>8</SUB>}}, 
    {{{{{<EM>x</EM><SUB>2</SUB>}, {<EM>x</EM><SUB>10</SUB>}}, 
    {<EM>x</EM><SUB>3</SUB>}},{<EM>x</EM><SUB>1</SUB>}},{<EM>x</EM><SUB>9</SUB>}}}, 
    {{<EM>x</EM><SUB>6</SUB>}, 
    {{<EM>x</EM><SUB>5</SUB>},{<EM>x</EM><SUB>7</SUB>}}}} </LI></UL>Step 3. (Tenth 
  iteration) <EM>C</EM>.size = 1. Algorithm done. <BR>
  <P>The cluster created from this algorithm can be seen in Figure 6. The 
  corresponding dendogram formed from the hierarchy in <EM>C</EM> is shown in 
  Figure 7. The points which appeared most closely together on the graph of 
  input data in Figure 5 are grouped together more closely in the hierarchy. 
  <BR><BR></P>
  <CENTER><IMG alt="" src="Clustering - 咨询之路 - 博客园.files/Clusters.gif" border=1> 
  <BR>Figure 6: Graph with Clusters </CENTER><BR>
  <CENTER><IMG alt="" src="Clustering - 咨询之路 - 博客园.files/Hiereg.gif" border=1> 
  <BR>Figure 7: Sample Dendogram </CENTER>
  <CENTER></CENTER>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -