📄 svm_struct_api.c
字号:
/***********************************************************************/
/* */
/* svm_struct_api.c */
/* */
/* Definition of API for attaching implementing SVM learning of */
/* structures (e.g. parsing, multi-label classification, HMM) */
/* */
/* Author: Thorsten Joachims */
/* Date: 03.07.04 */
/* */
/* Copyright (c) 2004 Thorsten Joachims - All rights reserved */
/* */
/* This software is available for non-commercial use only. It must */
/* not be modified and distributed without prior permission of the */
/* author. The author is not responsible for implications from the */
/* use of this software. */
/* */
/***********************************************************************/
#include <stdio.h>
#include <string.h>
#include "svm_struct/svm_struct_common.h"
#include "svm_struct_api.h"
void svm_struct_learn_api_init(int argc, char* argv[])
{
/* Called in learning part before anything else is done to allow
any initializations that might be necessary. */
}
void svm_struct_learn_api_exit()
{
/* Called in learning part at the very end to allow any clean-up
that might be necessary. */
}
void svm_struct_classify_api_init(int argc, char* argv[])
{
/* Called in prediction part before anything else is done to allow
any initializations that might be necessary. */
}
void svm_struct_classify_api_exit()
{
/* Called in prediction part at the very end to allow any clean-up
that might be necessary. */
}
SAMPLE read_struct_examples(char *file, STRUCT_LEARN_PARM *sparm)
{
/* Reads training examples and returns them in sample. The number of
examples must be written into sample.n */
SAMPLE sample; /* sample */
EXAMPLE *examples;
long n; /* number of examples */
DOC **docs; /* examples in original SVM-light format */
double *target;
long totwords,i,num_classes=0;
/* Using the read_documents function from SVM-light */
read_documents(file,&docs,&target,&totwords,&n);
examples=(EXAMPLE *)my_malloc(sizeof(EXAMPLE)*n);
for(i=0;i<n;i++) /* find highest class label */
if(num_classes < (target[i]+0.1))
num_classes=target[i]+0.1;
for(i=0;i<n;i++) { /* copy docs over into new datastructure */
examples[i].x.doc=docs[i];
examples[i].y.class=target[i]+0.1;
examples[i].y.scores=NULL;
examples[i].y.num_classes=num_classes;
}
free(target);
free(docs);
sample.n=n;
sample.examples=examples;
if(struct_verbosity>=0)
printf(" (%d examples) ",sample.n);
return(sample);
}
void init_struct_model(SAMPLE sample, STRUCTMODEL *sm,
STRUCT_LEARN_PARM *sparm, LEARN_PARM *lparm,
KERNEL_PARM *kparm)
{
/* Initialize structmodel sm. The weight vector w does not need to be
initialized, but you need to provide the maximum size of the
feature space in sizePsi. This is the maximum number of different
weights that can be learned. Later, the weight vector w will
contain the learned weights for the model. */
long i,totwords=0;
WORD *w;
sparm->num_classes=1;
for(i=0;i<sample.n;i++) /* find highest class label */
if(sparm->num_classes < (sample.examples[i].y.class+0.1))
sparm->num_classes=sample.examples[i].y.class+0.1;
for(i=0;i<sample.n;i++) /* find highest feature number */
for(w=sample.examples[i].x.doc->fvec->words;w->wnum;w++)
if(totwords < w->wnum)
totwords=w->wnum;
sparm->num_features=totwords;
if(struct_verbosity>=0)
printf("Training set properties: %d features, %d classes\n",
sparm->num_features,sparm->num_classes);
sm->sizePsi=sparm->num_features*sparm->num_classes;
if(struct_verbosity>=2)
printf("Size of Phi: %ld\n",sm->sizePsi);
}
CONSTSET init_struct_constraints(SAMPLE sample, STRUCTMODEL *sm,
STRUCT_LEARN_PARM *sparm)
{
/* Initializes the optimization problem. Typically, you do not need
to change this function, since you want to start with an empty
set of constraints. However, if for example you have constraints
that certain weights need to be positive, you might put that in
here. The constraints are represented as lhs[i]*w >= rhs[i]. lhs
is an array of feature vectors, rhs is an array of doubles. m is
the number of constraints. The function returns the initial
set of constraints. */
CONSTSET c;
long sizePsi=sm->sizePsi;
long i;
WORD words[2];
if(1) { /* normal case: start with empty set of constraints */
c.lhs=NULL;
c.rhs=NULL;
c.m=0;
}
else { /* add constraints so that all learned weights are
positive. WARNING: Currently, they are positive only up to
precision epsilon set by -e. */
c.lhs=my_malloc(sizeof(DOC *)*sizePsi);
c.rhs=my_malloc(sizeof(double)*sizePsi);
for(i=0; i<sizePsi; i++) {
words[0].wnum=i+1;
words[0].weight=1.0;
words[1].wnum=0;
/* the following slackid is a hack. we will run into problems,
if we have move than 1000000 slack sets (ie examples) */
c.lhs[i]=create_example(i,0,1000000+i,1,create_svector(words,"",1.0));
c.rhs[i]=0.0;
}
}
return(c);
}
LABEL classify_struct_example(PATTERN x, STRUCTMODEL *sm,
STRUCT_LEARN_PARM *sparm)
{
/* Finds the label yhat for pattern x that scores the highest
according to the linear evaluation function in sm, especially the
weights sm.w. The returned label is taken as the prediction of sm
for the pattern x. The weights correspond to the features defined
by psi() and range from index 1 to index sm->sizePsi. If the
function cannot find a label, it shall return an empty label as
recognized by the function empty_label(y). */
LABEL y;
DOC doc;
long class,bestclass=-1,first=1,j;
double score,bestscore=-1;
WORD *words;
doc=*(x.doc);
y.scores=(double *)my_malloc(sizeof(double)*(sparm->num_classes+1));
y.num_classes=sparm->num_classes;
words=doc.fvec->words;
for(j=0;(words[j]).wnum != 0;j++) { /* Check if feature numbers */
if((words[j]).wnum>sparm->num_features) /* are not larger than in */
(words[j]).wnum=0; /* model. Remove feature if */
} /* necessary. */
for(class=1;class<=sparm->num_classes;class++) {
y.class=class;
doc.fvec=psi(x,y,sm,sparm);
score=classify_example(sm->svm_model,&doc);
free_svector(doc.fvec);
y.scores[class]=score;
if((bestscore<score) || (first)) {
bestscore=score;
bestclass=class;
first=0;
}
}
y.class=bestclass;
return(y);
}
LABEL find_most_violated_constraint_slackrescaling(PATTERN x, LABEL y,
STRUCTMODEL *sm,
STRUCT_LEARN_PARM *sparm)
{
/* Finds the label ybar for pattern x that that is responsible for
the most violated constraint for the slack rescaling
formulation. It has to take into account the scoring function in
sm, especially the weights sm.w, as well as the loss
function. The weights in sm.w correspond to the features defined
by psi() and range from index 1 to index sm->sizePsi. Most simple
is the case of the zero/one loss function. For the zero/one loss,
this function should return the highest scoring label ybar, if
ybar is unequal y; if it is equal to the correct label y, then
the function shall return the second highest scoring label. If
the function cannot find a label, it shall return an empty label
as recognized by the function empty_label(y). */
LABEL ybar;
DOC doc;
long class,bestclass=-1,first=1;
double score,score_y,score_ybar,bestscore=-1;
/* NOTE: This function could be made much more efficient by not
always computing a new PSI vector. */
doc=*(x.doc);
doc.fvec=psi(x,y,sm,sparm);
score_y=classify_example(sm->svm_model,&doc);
free_svector(doc.fvec);
ybar.scores=NULL;
ybar.num_classes=sparm->num_classes;
for(class=1;class<=sparm->num_classes;class++) {
ybar.class=class;
doc.fvec=psi(x,ybar,sm,sparm);
score_ybar=classify_example(sm->svm_model,&doc);
free_svector(doc.fvec);
score=loss(y,ybar,sparm)*(1.0-score_y+score_ybar);
if((bestscore<score) || (first)) {
bestscore=score;
bestclass=class;
first=0;
}
}
if(bestclass == -1)
printf("ERROR: Only one class\n");
ybar.class=bestclass;
if(struct_verbosity>=3)
printf("[%ld:%.2f] ",bestclass,bestscore);
return(ybar);
}
LABEL find_most_violated_constraint_marginrescaling(PATTERN x, LABEL y,
STRUCTMODEL *sm,
STRUCT_LEARN_PARM *sparm)
{
/* Finds the label ybar for pattern x that that is responsible for
the most violated constraint for the margin rescaling
formulation. It has to take into account the scoring function in
sm, especially the weights sm.w, as well as the loss
function. The weights in sm.w correspond to the features defined
by psi() and range from index 1 to index sm->sizePsi. Most simple
is the case of the zero/one loss function. For the zero/one loss,
this function should return the highest scoring label ybar, if
ybar is unequal y; if it is equal to the correct label y, then
the function shall return the second highest scoring label. If
the function cannot find a label, it shall return an empty label
as recognized by the function empty_label(y). */
LABEL ybar;
DOC doc;
long class,bestclass=-1,first=1;
double score,bestscore=-1;
/* NOTE: This function could be made much more efficient by not
always computing a new PSI vector. */
doc=*(x.doc);
ybar.scores=NULL;
ybar.num_classes=sparm->num_classes;
for(class=1;class<=sparm->num_classes;class++) {
ybar.class=class;
doc.fvec=psi(x,ybar,sm,sparm);
score=classify_example(sm->svm_model,&doc);
free_svector(doc.fvec);
score+=loss(y,ybar,sparm);
if((bestscore<score) || (first)) {
bestscore=score;
bestclass=class;
first=0;
}
}
if(bestclass == -1)
printf("ERROR: Only one class\n");
ybar.class=bestclass;
if(struct_verbosity>=3)
printf("[%ld:%.2f] ",bestclass,bestscore);
return(ybar);
}
int empty_label(LABEL y)
{
/* Returns true, if y is an empty label. An empty label might be
returned by find_most_violated_constraint_???(x, y, sm) if there
is no incorrect label that can be found for x, or if it is unable
to label x at all */
return(y.class<0.9);
}
SVECTOR *psi(PATTERN x, LABEL y, STRUCTMODEL *sm,
STRUCT_LEARN_PARM *sparm)
{
/* Returns a feature vector describing the match between pattern x and
label y. The feature vector is returned as an SVECTOR
(i.e. pairs <featurenumber:featurevalue>), where the last pair has
featurenumber 0 as a terminator. Featurenumbers start with 1 and end with
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -