📄 user_logic.v
字号:
//----------------------------------------------------------------------------
// user_logic.v - module
//----------------------------------------------------------------------------
//
// ***************************************************************************
// ** Copyright (c) 1995-2006 Xilinx, Inc. All rights reserved. **
// ** **
// ** Xilinx, Inc. **
// ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" **
// ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND **
// ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, **
// ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, **
// ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION **
// ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, **
// ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **
// ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY **
// ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **
// ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **
// ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **
// ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **
// ** FOR A PARTICULAR PURPOSE. **
// ** **
// ***************************************************************************
//
//----------------------------------------------------------------------------
// Filename: user_logic.v
// Version: 1.00.a
// Description: User logic module.
// Date: Sun Jul 22 10:56:09 2007 (by Create and Import Peripheral Wizard)
// Verilog Standard: Verilog-2001
//----------------------------------------------------------------------------
// Naming Conventions:
// active low signals: "*_n"
// clock signals: "clk", "clk_div#", "clk_#x"
// reset signals: "rst", "rst_n"
// generics: "C_*"
// user defined types: "*_TYPE"
// state machine next state: "*_ns"
// state machine current state: "*_cs"
// combinatorial signals: "*_com"
// pipelined or register delay signals: "*_d#"
// counter signals: "*cnt*"
// clock enable signals: "*_ce"
// internal version of output port: "*_i"
// device pins: "*_pin"
// ports: "- Names begin with Uppercase"
// processes: "*_PROCESS"
// component instantiations: "<ENTITY_>I_<#|FUNC>"
//----------------------------------------------------------------------------
module user_logic
(
// -- ADD USER PORTS BELOW THIS LINE ---------------
sclk,
cs_l,
spi_in_bit,
// --USER ports added here
// -- ADD USER PORTS ABOVE THIS LINE ---------------
// -- DO NOT EDIT BELOW THIS LINE ------------------
// -- Bus protocol ports, do not add to or delete
Bus2IP_Clk, // Bus to IP clock
Bus2IP_Reset, // Bus to IP reset
Bus2IP_Data, // Bus to IP data bus for user logic
Bus2IP_BE, // Bus to IP byte enables for user logic
Bus2IP_RdCE, // Bus to IP read chip enable for user logic
Bus2IP_WrCE, // Bus to IP write chip enable for user logic
IP2Bus_Data, // IP to Bus data bus for user logic
IP2Bus_Ack, // IP to Bus acknowledgement
IP2Bus_Retry, // IP to Bus retry response
IP2Bus_Error, // IP to Bus error response
IP2Bus_ToutSup // IP to Bus timeout suppress
// -- DO NOT EDIT ABOVE THIS LINE ------------------
); // user_logic
// -- ADD USER PARAMETERS BELOW THIS LINE ------------
// --USER parameters added here
// -- ADD USER PARAMETERS ABOVE THIS LINE ------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol parameters, do not add to or delete
parameter C_DWIDTH = 32;
parameter C_NUM_CE = 2;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
// -- ADD USER PORTS BELOW THIS LINE -----------------
output sclk;
output cs_l;
input spi_in_bit;
// --USER ports added here
// -- ADD USER PORTS ABOVE THIS LINE -----------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol ports, do not add to or delete
input Bus2IP_Clk;
input Bus2IP_Reset;
input [0 : C_DWIDTH-1] Bus2IP_Data;
input [0 : C_DWIDTH/8-1] Bus2IP_BE;
input [0 : C_NUM_CE-1] Bus2IP_RdCE;
input [0 : C_NUM_CE-1] Bus2IP_WrCE;
output [0 : C_DWIDTH-1] IP2Bus_Data;
output IP2Bus_Ack;
output IP2Bus_Retry;
output IP2Bus_Error;
output IP2Bus_ToutSup;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
//----------------------------------------------------------------------------
// Implementation
//----------------------------------------------------------------------------
// --USER nets declarations added here, as needed for user logic
wire [31:0] data_14bit;
// Nets for user logic slave model s/w accessible register example
reg [0 : C_DWIDTH-1] slv_reg0;
reg [0 : C_DWIDTH-1] slv_reg1;
wire [0 : 1] slv_reg_write_select;
wire [0 : 1] slv_reg_read_select;
reg [0 : C_DWIDTH-1] slv_ip2bus_data;
wire slv_read_ack;
wire slv_write_ack;
integer byte_index, bit_index;
// --USER logic implementation added here
spi_s inst(.clk(Bus2IP_Clk),
.sclk(sclk),
.cs_l(cs_l),
.data_14bit(data_14bit),
.spi_in_bit(spi_in_bit),
//data_14bit_temp,
.rst_n(!Bus2IP_Reset)
);
// ------------------------------------------------------
// Example code to read/write user logic slave model s/w accessible registers
//
// Note:
// The example code presented here is to show you one way of reading/writing
// software accessible registers implemented in the user logic slave model.
// Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond
// to one software accessible register by the top level template. For example,
// if you have four 32 bit software accessible registers in the user logic, you
// are basically operating on the following memory mapped registers:
//
// Bus2IP_WrCE or Memory Mapped
// Bus2IP_RdCE Register
// "1000" C_BASEADDR + 0x0
// "0100" C_BASEADDR + 0x4
// "0010" C_BASEADDR + 0x8
// "0001" C_BASEADDR + 0xC
//
// ------------------------------------------------------
assign
slv_reg_write_select = Bus2IP_WrCE[0:1],
slv_reg_read_select = Bus2IP_RdCE[0:1],
slv_write_ack = Bus2IP_WrCE[0] || Bus2IP_WrCE[1],
slv_read_ack = Bus2IP_RdCE[0] || Bus2IP_RdCE[1];
// implement slave model register(s)
always @( posedge Bus2IP_Clk )
begin: SLAVE_REG_WRITE_PROC
if ( Bus2IP_Reset == 1 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
end
else
case ( slv_reg_write_select )
2'b10 :
for ( byte_index = 0; byte_index <= (C_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg0[bit_index] <= Bus2IP_Data[bit_index];
2'b01 :
for ( byte_index = 0; byte_index <= (C_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg1[bit_index] <= Bus2IP_Data[bit_index];
default : ;
endcase
end // SLAVE_REG_WRITE_PROC
// implement slave model register read mux
always @( slv_reg_read_select or slv_reg0 or slv_reg1 )
begin: SLAVE_REG_READ_PROC
case ( slv_reg_read_select )
2'b10 : slv_ip2bus_data[20:31] <= data_14bit[27:16];//slv_reg0;
2'b01 : slv_ip2bus_data[20:31]<= data_14bit[11:0];//slv_reg1;
default : slv_ip2bus_data <= 0;
endcase
end // SLAVE_REG_READ_PROC
// ------------------------------------------------------------
// Example code to drive IP to Bus signals
// ------------------------------------------------------------
assign IP2Bus_Data = slv_ip2bus_data;
assign IP2Bus_Ack = slv_write_ack || slv_read_ack;
assign IP2Bus_Error = 0;
assign IP2Bus_Retry = 0;
assign IP2Bus_ToutSup = 0;
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -