📄 dd1m.m
字号:
function [xhat_data,Smat]=dd1m(kalmfilex,kalmfiley,xbar,P0,q,r,...
u,y,timeidx,optpar)
% DD1M
% This function implements the DD1-filter; a state estimator for nonlinear
% systems that is based on first-order polynomial approximations of the
% nonlinear mappings. The approximations are derived by using a
% multivariable extension of Stirling's interpolation formula.
% The function is implemented to handle multiple observation streams.
% The model of the nonlinear system must be specified in the form:
% x(k+1) = f[x(k),u(k),v(k)]
% y1(k) = g1[x(k),w1(k)]
% :
% yn(k) = gn[x(k),wn(k)]
% where 'x' is the state vector, 'u' is a possible input, and 'v' and 'w'
% are (white) noise sources.
%
% Call
% [xhat,Smat]=dd1m(xfile,yfile,x0,P0,q,r,u,y,tidx,optpar)
%
% Input
% xfile - File containing the state equations.
% yfunc - Cell structure specifying the names of the functions
% containing the output equations.
% x0 - Initial state vector.
% P0 - Initial covariance matrix (symmetric, nonnegative definite).
% q - Covariance matrices for process noise.
% r - Cell structure containing the measurement noise cov. matrices.
% u - Input signal. Dimension is [samples x inputs].
% Use [] if there are no inputs.
% y - Cell structure containing the output signals.
% Dimension of each stream is [observations x outputs-in-stream].
% tidx - Cell structure containing vector with time stamps (in samples)
% for the observations in y.
% optpar - Data structure containing optional parameters:
% .vmean: Mean of process noise vector.
% .wmean: Mean of measurement noise vector (cell structure).
% .init : Initial parameters for 'xfile', 'yfile'
% (use an arbitrary format).
%
% Output
% xhat - State estimates. Dimension is [samples+1 x states].
% Smat - Matrix where each row contains elements of (the upper triangular
% part of) the Cholesky factor of a covariance matrix. The
% dimension is [samples+1 x 0.5*states*(states+1)]. The individual
% covariance matrices can later be extracted with SMAT2COV.
%
% The user must write the two m-functions 'xfile' and 'yfile' containing the
% state update and the output equation. The function containing the state
% update should take three arguments:
% function x=my_xfile(x,u,v)
%
% while the function containing the output equation should take two
% arguments:
% function y=my_yfile(x,w)
%
% In both cases, an initialization of constant parameters can be
% made using the parameter 'optpar.init'. This parameter is passed through
% x if the functions are called with only one parameter.
%
% Literature:
% M. Norgaard, N.K. Poulsen, O. Ravn: Easy and Accurate State Estimation
% for Nonlinear Systems," 14th IFAC World Conference
% in Beijing, China, July 5-9, 1999, pp. 343-348.
% Tor S. Schei: "A Finite-Difference Method for Linearization in
% Nonlinear Estimation Algorithms", Automatica, Vol. 33, No. 11,
% 1997, pp. 2053-2058.
% Written by: Magnus Norgaard, IMM/IAU, Technical University of Denmark
% LastEditDate: Apr. 15, 2000
% >>>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<
h2 = 3; % Squared divided difference step
h = sqrt(h2); % Divided difference step
scal1 = 0.5/h; % Scaling factor
nx = size(P0,1); % # of states
nv = size(q,1); % # of process noise sources
if isempty(xbar), % Set to x0=0 if not specified
xbar = zeros(nx,1);
elseif length(xbar)~=nx,
error('Dimension mismatch between x0 and P0');
end
streams = length(y);
if ~(iscell(kalmfiley) & iscell(r) & iscell(timeidx) & iscell(y))
error('"yfunc", "r", "tidx", and "y" must be cell structures');
elseif (streams~=length(r) | streams~=length(timeidx) | ...
streams~=length(kalmfiley))
error('"yfunc", "r", "tidx", and "y" must have same number of cells');
end
ny = 0; % Total number of observations
lastsample = 0; % Number of sample containing last observation
idx1 = zeros(streams,1); % Index to start of each stream in ybar
idx2 = zeros(streams,1); % Index to end of each stream in ybar
for n=1:streams, % Wrap information about observation stream
obs(n).yfunc = kalmfiley{n}; % into data structure
obs(n).y = y{n};
obs(n).tidx = timeidx{n};
obs(n).ny = size(obs(n).y,2);
obs(n).nobs = size(obs(n).y,1);
[v,d] = eig(r{n});
obs(n).nw = size(r{n},1);
obs(n).Sw = real(v*sqrt(d)); % Square root of measurement noise cov.
obs(n).Syw = zeros(obs(n).ny,obs(n).nw);
obs(n).Syx = zeros(obs(n).ny,nx);
if (obs(n).nobs~=size(obs(n).tidx,1)),
error('Dimension mismatch between y and tidx');
end
ny = ny + obs(n).ny;
if obs(n).tidx(end)>lastsample,
lastsample=obs(n).tidx(end);
end
idx1(n) = ny - obs(n).ny + 1;
idx2(n) = ny;
end
if isempty(u), % No inputs
nu = 0; samples = lastsample; uk1 = [];
else
[samples,nu] = size(u); % # of samples and inputs
end
xhat_data = zeros(samples+1,nx); % Matrix for storing state estimates
Smat = zeros(samples+1,0.5*nx*(nx+1)); % Matrix for storing cov. matrices
[I,J] = find(triu(reshape(1:nx*nx,nx,nx))'); % Index to elem. in Sx
sidx = sub2ind([nx nx],J,I);
ybar = zeros(ny,1);
yidx = ones(streams,1);% Index into y-vectors
% ----- Initialize state+output equations and linearization -----
if nargin<10, % No optional parameters passed
optpar = [];
end
if isfield(optpar,'init') % Parameters for m-functions
initpar = optpar.init;
else
initpar = [];
end
if isfield(optpar,'vmean'),% Mean of process noise
vmean = optpar.vmean;
else
vmean = zeros(nv,1);
end
if isfield(optpar,'wmean'),% Mean of measurement noise
if ~iscell(optpar.wmean),
error('"optpar.wmean" must be a cell structure');
elseif streams~=length(optpar.wmean),
error('"optpar.wmean" has a wrong number of cells');
end
for n=1:streams,
obs(n).wmean = optpar.wmean{n};
end
else
for n=1:streams,
obs(n).wmean = zeros(obs(n).nw,1);
end
end
feval(kalmfilex,initpar); % Initialize state equation
for n=1:streams,
feval(obs(n).yfunc,initpar); % Initialize output equations
end
counter = 0; % Counts the progress of the filtering
waithandle=waitbar(0,'Filtering in progress'); % Initialize waitbar
[v,d] = eig(P0); % Cholesky factor of initial state covariance
Sxbar = triag(real(v*sqrt(d)));
[v,d] = eig(q); % Cholesky factor of process noise covariance
Sv = real(v*sqrt(d));
Sxx = zeros(nx,nx);
Sxv = zeros(nx,nv);
% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FILTERING <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
for k=0:samples,
% --- Measurement update (a posteriori update) ---
for n=1:streams,
ybar(idx1(n):idx2(n)) = feval(obs(n).yfunc,xbar,obs(n).wmean);
if (k<=obs(n).tidx(end) & obs(n).tidx(yidx(n))==k),
for kx=1:nx,
syp = feval(obs(n).yfunc,xbar+h*Sxbar(:,kx),obs(n).wmean);
sym = feval(obs(n).yfunc,xbar-h*Sxbar(:,kx),obs(n).wmean);
obs(n).Syx(:,kx) = scal1*(syp-sym);
end
for kw=1:obs(n).nw,
swp = feval(obs(n).yfunc,xbar,obs(n).wmean+h*obs(n).Sw(:,kw));
swm = feval(obs(n).yfunc,xbar,obs(n).wmean-h*obs(n).Sw(:,kw));
obs(n).Syw(:,kw) = scal1*(swp-swm);
end
% Cholesky factor of a'posteriori output estimation error covariance
Sy = triag([obs(n).Syx obs(n).Syw]);
% Kalman gain
K = (Sxbar*obs(n).Syx')/(Sy*Sy');
% State estimate
xbar = xbar + K*[obs(n).y(yidx(n),:)'-ybar(idx1(n):idx2(n))];
% Cholesky factor of a'posteriori estimation error covariance
Sxbar = triag([Sxbar-K*obs(n).Syx K*obs(n).Syw]);
yidx(n) = yidx(n) + 1; % Update index in time vector
end
end
xhat = xbar;
Sx = Sxbar;
% --- Time update (a'priori update) of state and covariance ---
if k<samples,
if nu>0 uk1 = u(k+1,:)'; end
xbar=feval(kalmfilex,xhat,uk1,vmean);
for kx=1:nx,
sxp = feval(kalmfilex,xhat+h*Sx(:,kx),uk1,vmean);
sxm = feval(kalmfilex,xhat-h*Sx(:,kx),uk1,vmean);
Sxx(:,kx) = scal1*(sxp-sxm);
end
for kv=1:nv,
svp = feval(kalmfilex,xhat,uk1,vmean+h*Sv(:,kv));
svm = feval(kalmfilex,xhat,uk1,vmean-h*Sv(:,kv));
Sxv(:,kv) = scal1*(svp-svm);
end
% Cholesky factor of a'priori estimation error covariance
Sxbar = triag([Sxx Sxv]);
end
% --- Store results ---
xhat_data(k+1,:) = xhat';
Smat(k+1,:) = Sx(sidx)';
% --- How much longer? ---
if (counter+0.01<= k/samples),
counter = k/samples;
waitbar(k/samples,waithandle);
end
end
close(waithandle);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -