📄 vga.vhd
字号:
START => HSYNC_START, -- start of horizontal sync pulse in scan line
WIDTH => HSYNC_WIDTH, -- width of horizontal sync pulse
VISIBLE => PIXELS_PER_LINE
)
port map (
rst => rst,
clk => clk, -- master clock
cke => cke, -- clock always enabled so there is a new pixel output on every clock pulse
sync_n => hsync_x(1), -- send pulse through delay line
gate => v_gate, -- send gate signal to increment vertical sync pulse generator once per scan line
blank => h_blank, -- blanking signal within a scan line
cnt => pixel_cnt -- current pixel within the scan line
);
vsync : sync
generic map (
FREQ => HSYNC_FREQ, -- scanline frequency (KHz)
PERIOD => VSYNC_PERIOD, -- image frame period
START => VSYNC_START, -- start of vertical sync pulse in frame
WIDTH => VSYNC_WIDTH, -- width of vertical sync pulse
VISIBLE => LINES_PER_FRAME
)
port map (
rst => rst,
clk => clk, -- master clock
cke => cke_v_gate, -- enable clock once per horizontal scan line
sync_n => vsync_n, -- send pulse through delay line
gate => eof_x, -- indicate the end of a complete frame
blank => v_blank, -- blanking signal within a frame
cnt => line_cnt -- current scan line within a frame
);
end generate;
eof_i <= eof_x and not eof_r; -- shorten end-of-frame signal to a single clock cycle
eof <= eof_i;
fifo_rst <= eof_i or rst; -- clear the contents of the pixel buffer at the end of every frame
visible <= h_blank nor v_blank; -- pixels are visible when horiz. & vertical blank are inactive
blank_x(1) <= not visible; -- send blanking signal through delay line
-- pass the horiz. and vert. syncs and blanking signal through delay lines to compensate for the
-- processing delays incurred by the pixel data
hsync_x(hsync_x'high downto 2) <= hsync_r(hsync_r'high-1 downto 1);
hsync_n <= hsync_r(hsync_r'high);
blank_x(blank_x'high downto 2) <= blank_r(blank_r'high-1 downto 1);
blank <= blank_r(blank_r'high);
-- get the current pixel from the word of pixel data or read more pixel data from the buffer
get_pixel : process(visible, pixel_data_out, pixel_data_r, rd_r, pixel_cnt)
begin
rd_x <= NO; -- by default, don't read next word of pixel data from the buffer
-- shift pixel data depending on its width so the next pixel is in the LSBs of the pixel data shift register
case PIXEL_WIDTH is
when 1 => -- 1-bit pixels, 16 per pixel data word
if (visible = YES) and (pixel_cnt(3 downto 0) = 0) then
rd_x <= YES; -- read new pixel data from buffer every 16 clocks during visible portion of scan line
end if;
pixel_data_x <= "0" & pixel_data_r(15 downto 1); -- left-shift pixel data to move next pixel to LSB
when 2 => -- 2-bit pixels, 8 per pixel data word
if (visible = YES) and (pixel_cnt(2 downto 0) = 0) then
rd_x <= YES; -- read new pixel data from buffer every 8 clocks during visible portion of scan line
end if;
pixel_data_x <= "00" & pixel_data_r(15 downto 2); -- left-shift pixel data to move next pixel to LSB
when 4 => -- 4-bit pixels, 4 per pixel data word
if (visible = YES) and (pixel_cnt(1 downto 0) = 0) then
rd_x <= YES; -- read new pixel data from buffer every 4 clocks during visible portion of scan line
end if;
pixel_data_x <= "0000" & pixel_data_r(15 downto 4); -- left-shift pixel data to move next pixel to LSB
when 8 => -- 8-bit pixels, 2 per pixel data word
if (visible = YES) and (pixel_cnt(0 downto 0) = 0) then
rd_x <= YES; -- read new pixel data from buffer every 2 clocks during visible portion of scan line
end if;
pixel_data_x <= "00000000" & pixel_data_r(15 downto 8); -- left-shift pixel data to move next pixel to LSB
when others => -- any other width, then 1 per pixel data word
if (visible = YES) then
rd_x <= YES; -- read new pixel data from buffer every clock during visible portion of scan line
end if;
pixel_data_x <= pixel_data_r;
end case;
-- store the pixel data from the buffer instead of shifting the pixel data
-- if a read operation was initiated in the previous cycle.
if rd_r = YES then
pixel_data_x <= pixel_data_out;
end if;
-- the current pixel is in the lower bits of the pixel data shift register
pixel <= pixel_data_r(pixel'range);
end process get_pixel;
-- map the current pixel to RGB values
map_pixel : process(pixel, rgb_r, blank_r)
begin
if NUM_RGB_BITS = 2 then
case PIXEL_WIDTH is
when 1 => -- 1-bit pixels map to black or white
rgb_x <= (others => pixel(0));
when 2 => -- 2-bit pixels map to black, 2/3 gray, 1/3 gray, and white
rgb_x <= pixel(1 downto 0) & pixel(1 downto 0) & pixel(1 downto 0);
when 4 => -- 4-bit pixels map to 8 colors (ignore MSB)
rgb_x <= pixel(2) & pixel(2) & pixel(1) & pixel(1) & pixel(0) & pixel(0);
when 8 => -- 8-bit pixels map directly to RGB values
rgb_x <= pixel(7 downto 6) & pixel(4 downto 1);
when others => -- 16-bit pixels maps directly to RGB values
rgb_x <= pixel(8) & pixel(7) & pixel(5) & pixel(4) & pixel(2) & pixel(1);
end case;
else -- NUM_RGB_BITS=3
case PIXEL_WIDTH is
when 1 => -- 1-bit pixels map to black or white
rgb_x <= (others => pixel(0));
when 2 => -- 2-bit pixels map to black, 5/7 gray, 3/7 gray, and 1/7 gray
rgb_x <= pixel(1 downto 0) & '0' & pixel(1 downto 0) & '0' & pixel(1 downto 0) & '0';
when 4 => -- 4-bit pixels map to 8 colors (ignore MSB)
rgb_x <= pixel(2) & pixel(2) & pixel(2) & pixel(1) & pixel(1) & pixel(1) & pixel(0) & pixel(0) & pixel(0);
when 8 => -- 8-bit pixels map to RGB with reduced resolution in green component
rgb_x <= pixel(7 downto 5) & pixel(4 downto 3) & '0' & pixel(2 downto 0);
when others => -- 16-bit pixels map directly to RGB values
rgb_x <= pixel(8 downto 0);
end case;
end if;
-- just blank the pixel if not in the visible region of the screen
if blank_r(blank_r'high-1) = YES then
rgb_x <= (others => '0');
end if;
-- break the pixel into its red, green and blue components
r <= rgb_r(3*NUM_RGB_BITS-1 downto 2*NUM_RGB_BITS);
g <= rgb_r(2*NUM_RGB_BITS-1 downto NUM_RGB_BITS);
b <= rgb_r(NUM_RGB_BITS-1 downto 0);
end process map_pixel;
-- update registers
update : process(rst, clk)
begin
if rst = YES then
eof_r <= '0';
rd_r <= NO;
hsync_r <= (others => '1');
blank_r <= (others => '0');
pixel_data_r <= (others => '0');
rgb_r <= (others => '0');
elsif rising_edge(clk) then
eof_r <= eof_x; -- end-of-frame signal goes at full clock rate to external system
if cke = YES then
rd_r <= rd_x;
hsync_r <= hsync_x;
blank_r <= blank_x;
pixel_data_r <= pixel_data_x;
rgb_r <= rgb_x;
end if;
end if;
end process update;
end architecture vga_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use work.common.all;
-- Generate a sync pulse within a waveform PERIOD.
-- Also output the value of the counter used for timing so that
-- it can be used in generating an address for a video RAM.
entity sync is
generic (
FREQ : natural := 50_000; -- master clock frequency (in KHz)
PERIOD : natural := 32; -- period of sync pulse (in us)
START : natural := 26; -- time sync pulse starts within the period (in us)
WIDTH : natural := 4; -- width of sync pulse (in us)
VISIBLE : natural := 1024 -- number of visible pixels/line or lines/frame
);
port (
rst : in std_logic; -- reset
clk : in std_logic; -- master clock
cke : in std_logic; -- clock-enable
sync_n : out std_logic; -- sync pulse
gate : out std_logic; -- single-clock pulse at start of sync pulse
blank : out std_logic; -- blanking signal
cnt : out std_logic_vector(15 downto 0) -- output the timing counter value
);
end entity sync;
architecture sync_arch of sync is
constant NORM : natural := 1000; -- normalization factor for us * KHz
constant CYC_PERIOD : natural := (PERIOD * FREQ)/NORM; -- sync wave PERIOD in clock cycles
constant CYC_START : natural := (START * FREQ)/NORM; -- sync pulse START in cycles
constant CYC_WIDTH : natural := (WIDTH * FREQ)/NORM; -- sync pulse WIDTH in cycles
constant CYC_END : natural := CYC_START + CYC_WIDTH; -- sync pulse end in cycles
signal cnt_r, cnt_x : natural range 0 to (2**(cnt'high+1))-1; -- counter for timing sync pulse waveform
-- signal cnt_r, cnt_x : std_logic_vector(cnt'range); -- counter for timing sync pulse waveform
signal sync_r, sync_x : std_logic; -- sync register
signal gate_r, gate_x : std_logic; -- gate register
signal blank_r, blank_x : std_logic; -- blank register
begin
-- increment counter and wrap around to zero at end of period
cnt_x <= 0 when cnt_r = CYC_PERIOD-1 else cnt_r+1;
-- generate sync pulse within waveform period
sync_x <= LO when cnt_r = CYC_START-1 else
HI when cnt_r = CYC_END-1 else
sync_r;
sync_n <= sync_r;
-- generate gate signal at start of sync pulse
gate_x <= YES when cnt_r = CYC_START-1 else NO;
gate <= gate_r;
-- generate blank signal after initial visible period
blank_x <= YES when cnt_r = VISIBLE-1 else
NO when cnt_r = CYC_PERIOD-1 else
blank_r;
blank <= blank_r;
-- output counter value
cnt <= std_logic_vector(TO_UNSIGNED(cnt_r, cnt'length));
-- update counter and registers
update : process(rst, clk)
begin
if rst = YES then
cnt_r <= 0;
sync_r <= HI;
gate_r <= NO;
blank_r <= YES;
elsif rising_edge(clk) then
if cke = YES then
cnt_r <= cnt_x;
sync_r <= sync_x;
gate_r <= gate_x;
blank_r <= blank_x;
end if;
end if;
end process update;
end architecture sync_arch;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -