⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmeans.rd

📁 一般的支持向量机算法比较单一
💻 RD
字号:
\name{cmeans}\alias{cmeans}\alias{print.fclust}\title{Fuzzy C-Means Clustering}\usage{cmeans (x, centers, iter.max=100, verbose=FALSE, dist="euclidean",        method="cmeans", m=2, rate.par = NULL)}\arguments{  \item{x}{The data matrix where columns correspond to variables and rows to observations}  \item{centers}{Number of clusters or initial values for cluster centers}  \item{iter.max}{Maximum number of iterations}  \item{verbose}{If \code{TRUE}, make some output during learning}  \item{dist}{Must be one of the following: If \code{"euclidean"}, the    mean square error, if \code{"manhattan"}, the mean absolute error is    computed. Abbreviations are also accepted.}  \item{method}{If \code{"cmeans"}, then we have the cmeans fuzzy    clustering method, if \code{"ufcl"} we have the On-line Update. Abbreviations in the method names are also accepted.}  \item{m}{The degree of fuzzification. It is defined for values greater    than 1}  \item{rate.par}{The parameter of the learning rate} }\description{  The fuzzy version of the known \emph{k}means clustering algorithm as  well as its online update (Unsupervised Fuzzy Competitive learning).  }\details{    The data given by \code{x} is clustered by the fuzzy \emph{k}means algorithm.    If \code{centers} is a matrix, its rows are taken as the initial cluster  centers. If \code{centers} is an integer, \code{centers} rows  of \code{x} are randomly chosen as initial values.    The algorithm stops when the maximum number of iterations (given by  \code{iter.max}) is reached.  If \code{verbose} is \code{TRUE}, it displays for each iteration the number  the value of the objective function.  If \code{dist} is \code{"euclidean"}, the distance between the  cluster center and the data points is the Euclidean distance (ordinary  fuzzy \emph{k}means algorithm). If \code{"manhattan"}, the distance  between the cluster center and the data points is the sum of the  absolute values of the distances of the coordinates.    If \code{method} is \code{"cmeans"}, then we have the kmeans fuzzy  clustering method. If \code{"ufcl"} we have the On-line Update  (Unsupervised Fuzzy Competitive learning) method, which works by  performing an update directly after each input signal.   The parameters \code{m} defines the degree of fuzzification. It is  defined for real values greater than 1 and the bigger it is the more  fuzzy the membership values of the clustered data points are.    The parameter \code{rate.par} of the learning rate for the \code{"ufcl"}  algorithm which is by default set to \code{rate.par=0.3} and is taking  real values in (0 , 1).}\value{  \code{cmeans} returns an object of class \code{"fclust"}.  \item{centers}{The final cluster centers.}  \item{size}{The number of data points in each cluster.}  \item{cluster}{Vector containing the indices of the clusters where    the data points are assigned to. The maximum membership value of a    point is considered for partitioning it to a cluster.}  \item{iter}{The number of iterations performed,} and  \item{membership}{a matrix with the membership values of the data points    to the clusters.}  \item{withinerror}{Returns the sum of square distances within the    clusters.}   \item{call}{Returns a call in which all of the arguments are    specified by their names.} }\author{Evgenia Dimitriadou}\references{  Nikhil R. Pal, James C. Bezdek, and Richard J. Hathaway.  \emph{Sequential Competitive Learning and the Fuzzy c-Means Clustering  Algorithms.} Neural Networks, Vol. \bold{9}, No. 5, pp. 787-796, 1996.  }\examples{# a 2-dimensional examplex<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),         matrix(rnorm(100,mean=1,sd=0.3),ncol=2))cl<-cmeans(x,2,20,verbose=TRUE,method="cmeans",m=2)print(cl)# a 3-dimensional examplex<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),         matrix(rnorm(150,mean=1,sd=0.3),ncol=3),         matrix(rnorm(150,mean=2,sd=0.3),ncol=3))cl<-cmeans(x,6,20,verbose=TRUE,method="cmeans")print(cl)# assign classes to some new datay<-rbind(matrix(rnorm(33,sd=0.3),ncol=3),         matrix(rnorm(33,mean=1,sd=0.3),ncol=3),         matrix(rnorm(3,mean=2,sd=0.3),ncol=3))#         ycl<-predict(cl, y, type="both")        }}\keyword{cluster}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -