⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main.frm

📁 几个人工智能-神经网络源程序,值得学习与改进
💻 FRM
字号:
VERSION 2.00
Begin Form frmMain 
   BorderStyle     =   3  'Fixed Double
   Caption         =   "aiNet DLL Test2 Application"
   ClientHeight    =   6210
   ClientLeft      =   1050
   ClientTop       =   1485
   ClientWidth     =   9285
   Height          =   6615
   Left            =   990
   LinkTopic       =   "Form1"
   ScaleHeight     =   6210
   ScaleWidth      =   9285
   Top             =   1140
   Width           =   9405
   Begin PictureBox Picture1 
      AutoSize        =   -1  'True
      Height          =   1635
      Left            =   120
      Picture         =   MAIN.FRX:0000
      ScaleHeight     =   1605
      ScaleWidth      =   9030
      TabIndex        =   3
      Top             =   120
      Width           =   9060
   End
   Begin TextBox tOut 
      BorderStyle     =   0  'None
      FontBold        =   0   'False
      FontItalic      =   0   'False
      FontName        =   "Courier New"
      FontSize        =   8.25
      FontStrikethru  =   0   'False
      FontUnderline   =   0   'False
      Height          =   4335
      Left            =   120
      MultiLine       =   -1  'True
      TabIndex        =   2
      Top             =   1800
      Width           =   7695
   End
   Begin CommandButton btnExit 
      Caption         =   "E&xit"
      Height          =   375
      Left            =   7980
      TabIndex        =   1
      Top             =   2400
      Width           =   1215
   End
   Begin CommandButton btnStart 
      Caption         =   "&Start"
      Height          =   375
      Left            =   7980
      TabIndex        =   0
      Top             =   1920
      Width           =   1215
   End
End

Sub btnExit_Click ()
   End

End Sub

Sub btnStart_Click ()
'------------------------------------------------------------------------ '
'                                                                         '
'    (C) Copyright 1996 by:  aiNet, Ales Krajnc, s.p.,                    '
'                            Trubarjeva 42, SI-3000 Celje,                '
'                            Europe, Slovenia                             '
'     All Rights Reserved                                                 '
'                                                                         '
'     Subject: Visual Basic code for single vector prediction.            '
'        File: DLLTST02 - The XOR problem with dynamic model creation     '
'       EMAIL: AINET@IKPIR.FAGG.UNI-LJ.SI                                 '
'                                                                         '
'-------------------------------------------------------------------------'

'--------------------------------------------------------------------------
'   Here it will be shown how we can solve the XOR problem using
'   aiNet C functions.
'
'   The XOR problem:
'   ================
'      Number of model vectors: 4
'          Number of variables: 3
'    Number of input variables: 3
'       Any discrete variables: NONE
'
'      Model vectors:  Inp,Inp,Out
'              row 1:  1,  1,  0
'              row 2:  1,  0,  1
'              row 3:  0,  1,  1
'              row 4:  0,  0,  0
'
'   Test vectors (vectors which will be used in prediction) together with
'   penalty coefficient and penalty method.
'
'       Prediction vectors:  Inp  Inp  Out
'                    prd 1:  0.9  0.1  ??
'                    prd 2:  0.1  0.9  ??
'                    prd 3:  0.2  0.2  ??
'                    prd 4:  0.7  0.7  ??
'
'       Penalty coeffcient: 1.5
'       Penalty methods:    NEAREST
'
'   NOTE: Selected penalty coefficients are in no case optimal.
'         They were selected randomly, to perform a few tests.
'         The test results were compared with the results calculated by
'         the main aiNet 1.14 application.
'
'   -----------------------------------------------------------------------
'   Results (rounded at fourth decimal):
'   -----------------------------------------------------------------------
'
'       Penalty cefficient: 1.5
'       Penalty method:     NEAREST N.
'                                      (RESULT)
'       Prediction vectors:  Inp Inp(Out)
'                    prd 1:  0.9  0.1  (0.9989)
'                    prd 2:  0.1  0.9  (0.9989)
'                    prd 3:  0.2  0.2  (0.1054)
'                    prd 4:  0.7  0.7  (0.3449)
'
'   -----------------------------------------------------------------------

Dim i As Integer
Dim ret As Integer                ' dummy for return values

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Support for text output
   '
   Dim CRNL As String             ' Carriage return + newline
   Dim T As String                ' tab
   Dim TT As String               ' 2 x tab
   CRNL = Chr(13) + Chr(10)
   T = Chr(9)
   TT = Chr(9) + Chr(9)

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Vectors to be predicted
   '
   ReDim predict(0 To 11) As Single
   predict(0) = .9: predict(1) = .1: predict(2) = 999
   predict(3) = .1: predict(4) = .9: predict(5) = 999
   predict(6) = .2: predict(7) = .2: predict(8) = 999
   predict(9) = .7: predict(10) = .7: predict(11) = 999
   
   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Model variable
   '
   Dim model As Long              ' works like a pointer to aiModel structure
   model = 0

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Title
   '
   version = aiGetVersion()
   major = Int(version / 100)
   minor = version Mod 100
   tOut = "aiNetDLL version " + CStr(major) + "." + CStr(minor)
   tOut = tOut + " (C) Copyright by aiNet, 1996" + CRNL
   
   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Register DLL
   '
   ret = aiRegistration("Your registration name", "Your code")

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Allocate the model variable and necessary memory
   '
   ' 4 model vectors
   ' 3 variables
   ' 2 input variables
   '
   model = aiCreateModel(4, 3, 2)
   If model = 0 Then
      tOut = tOut + CRNL + "Error: Something went wrong during model creation!"
      GoTo End_Sub
   End If

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Loading data into the model using aiSetVariable function
   '
   ret = aiSetVariable(model, 1, 1, 1#) ' first model vector
   ret = aiSetVariable(model, 1, 2, 1#) ' 1 xor 1 = 0
   ret = aiSetVariable(model, 1, 3, 0#)

   ret = aiSetVariable(model, 2, 1, 1#) ' second model vector
   ret = aiSetVariable(model, 2, 2, 0#) '1 xor 0 = 1
   ret = aiSetVariable(model, 2, 3, 1#)

   ret = aiSetVariable(model, 3, 1, 0#) ' third model vector
   ret = aiSetVariable(model, 3, 2, 1#) ' 0 xor 1 = 1
   ret = aiSetVariable(model, 3, 3, 1#)

   ret = aiSetVariable(model, 4, 1, 0#) ' fourth model vector
   ret = aiSetVariable(model, 4, 2, 0#) ' 0 xor 0 = 0
   ret = aiSetVariable(model, 4, 3, 0#)

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Output the model
   '
   nVec = aiGetNumberOfModelVectors(model)
   nVar = aiGetNumberOfVariables(model)
   ReDim flag(3) As Integer
   flag(1) = aiGetDiscreteFlag(model, 1)
   flag(2) = aiGetDiscreteFlag(model, 2)
   flag(3) = aiGetDiscreteFlag(model, 3)
   tOut = tOut + CRNL + "             Model name: aiNet DLL test 2 (aiCreateModel)"
   tOut = tOut + CRNL + "Number of model vectors: " + CStr(nVec)
   tOut = tOut + CRNL + "    Number of variables: " + CStr(nVar)
   tOut = tOut + CRNL + "         Variable names: A,   B,   A xor B"
   tOut = tOut + CRNL + "          Discrete flag: "
   tOut = tOut + CStr(flag(1)) + "    " + CStr(flag(2)) + "    " + CStr(flag(3))
   ReDim var(3) As Single
   Dim value As Single
   For i = 1 To aiGetNumberOfModelVectors(model) Step 1
      ret = aiGetVariableVB(model, i, 1, value): var(1) = value
      ret = aiGetVariableVB(model, i, 2, value): var(2) = value
      ret = aiGetVariableVB(model, i, 3, value): var(3) = value
      tOut = tOut + CRNL + T + Format$(var(1), "0.0")
      tOut = tOut + TT + Format$(var(2), "0.0")
      tOut = tOut + TT + Format$(var(3), "0.0")
   Next i

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Normalize the model
   '
   ret = aiNormalize(model, NORMALIZE_REGULAR)

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Prediction
   ' This test has nearest neighbour penalty coefficient 1.50
   '
   tOut = tOut + CRNL + CRNL + "   Penalty coefficient : 1.50"
   tOut = tOut + CRNL + "         Penalty method: NEAREST N."
   tOut = tOut + CRNL + CRNL + T + "A(inp)" + TT + "B(inp)" + TT + "A xor B(out)"
   ReDim pre(3) As Single
   For i = 0 To 3 Step 1
      ret = aiPrediction(model, predict(i * 3), 1.5, PENALTY_NEAREST)
      pre(1) = predict(i * 3 + 0)
      pre(2) = predict(i * 3 + 1)
      pre(3) = predict(i * 3 + 2)
      tOut = tOut + CRNL + T + CStr(Format$(pre(1), "0.0000"))
      tOut = tOut + TT + CStr(Format$(pre(2), "0.0000"))
      tOut = tOut + TT + CStr(Format$(pre(3), "0.0000"))
   Next
   
   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' Denormalize the model (in this case it is not necessary)
   '
   ret = aiDenormalize(model)
   
   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' We must call the aiDeleteModel function here since the
   ' model was allocated dynamicaly using the aiCreateModel
   ' function.
   '
   ret = aiDeleteModel(model)

   '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
   ' End
   '
   tOut = tOut + CRNL + CRNL + "End."

End_Sub:

End Sub

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -