人工智能:神经网络与深度学习 - 免费下载

技术资料资源 文件大小:15900 K

📋 资源详细信息

文件格式
PDF
所属分类
上传用户
上传时间
文件大小
15900 K
所需积分
2 积分
推荐指数
⭐⭐⭐ (3/5)

💡 温馨提示:本资源由用户 得之我幸78 上传分享,仅供学习交流使用。如有侵权,请联系我们删除。

资源简介

神经网络

神经网络是指用大量的简单计算单元构成的非线性系统,它在一定程度上模仿了人脑神经系统的信息处理、存储和检索功能,是对人脑神经网络的某种简化、抽象和模拟。

1943年心理学家McCulloch和数学家Pitts合作提出了神经元的数学模型M-P神经元模型,证明了单个神经元能执行逻辑功能,从此开创了神经科学理论研究的时代。

M-P模型,是按照生物神经元的结构和工作原理构造出来的一个抽象和简化了的神经元模型。

权重

当输入进入神经元时,它会乘以一个权重。例如,如果一个神经元有两个输入,则每个输入都将具有分配给它的一个关联权重。随机初始化权重,并在模型训练过程中更新这些权重。

偏置

除了权重之外,另一个被应用于输入的线性分量被称为偏置。它被加到权重与输入相乘的结果中。添加偏置的目的是改变权重与输入相乘所得结果的范围。

激活函数

激活函数的主要作用是加入非线性因素,以解决线性模型表达能力不足的缺陷,在整个神经网络中至关重要。常用的激活函数有Sigmoid、Tanh、ReLU。


立即下载此资源

提示:下载后请用压缩软件解压,推荐使用 WinRAR 或 7-Zip

资源说明

📥 下载说明

  • 下载需消耗 2积分
  • 24小时内重复下载不扣分
  • 支持断点续传
  • 资源永久有效

📦 使用说明

  • 下载后用解压软件解压
  • 推荐 WinRAR 或 7-Zip
  • 如有密码请查看说明
  • 解压后即可使用

🎁 积分获取

  • 上传资源获得积分
  • 每日签到免费领取
  • 邀请好友注册奖励
  • 查看详情 →

相关标签

点击标签查看更多相关资源:

相关资源推荐