📄 lm_core.c
字号:
* the aid of finite differences (forward or central, see the comment for the opts argument) */int LEVMAR_DIF( void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ LM_REAL *x, /* I: measurement vector */ int m, /* I: parameter vector dimension (i.e. #unknowns) */ int n, /* I: measurement vector dimension */ int itmax, /* I: maximum number of iterations */ LM_REAL opts[5], /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and * the step used in difference approximation to the jacobian. Set to NULL for defaults to be used. * If \delta<0, the jacobian is approximated with central differences which are more accurate * (but slower!) compared to the forward differences employed by default. */ LM_REAL info[LM_INFO_SZ], /* O: information regarding the minimization. Set to NULL if don't care * info[0]= ||e||_2 at initial p. * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. * info[5]= # iterations, * info[6]=reason for terminating: 1 - stopped by small gradient J^T e * 2 - stopped by small Dp * 3 - stopped by itmax * 4 - singular matrix. Restart from current p with increased mu * 5 - no further error reduction is possible. Restart with increased mu * 6 - stopped by small ||e||_2 * info[7]= # function evaluations * info[8]= # jacobian evaluations */ LM_REAL *work, /* working memory, allocate if NULL */ LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ void *adata) /* pointer to possibly additional data, passed uninterpreted to func. * Set to NULL if not needed */{register int i, j, k, l;int worksz, freework=0, issolved;/* temp work arrays */LM_REAL *e, /* nx1 */ *hx, /* \hat{x}_i, nx1 */ *jacTe, /* J^T e_i mx1 */ *jac, /* nxm */ *jacTjac, /* mxm */ *Dp, /* mx1 */ *diag_jacTjac, /* diagonal of J^T J, mx1 */ *pDp, /* p + Dp, mx1 */ *wrk; /* nx1 */int using_ffdif=1;LM_REAL *wrk2=NULL; /* nx1, used for differentiating with central differences only */register LM_REAL mu, /* damping constant */ tmp; /* mainly used in matrix & vector multiplications */LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;LM_REAL init_p_eL2;int nu, nu2, stop, nfev, njap=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;const int nm=n*m; mu=jacTe_inf=p_L2=0.0; /* -Wall */ stop=updjac=newjac=0; /* -Wall */ if(n<m){ fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m); exit(1); } if(opts){ tau=opts[0]; eps1=opts[1]; eps2=opts[2]; eps2_sq=opts[2]*opts[2]; eps3=opts[3]; delta=opts[4]; if(delta<0.0){ delta=-delta; /* make positive */ using_ffdif=0; /* use central differencing */ wrk2=(LM_REAL *)malloc(n*sizeof(LM_REAL)); if(!wrk2){ fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request for 'wrk2' failed\n")); exit(1); } } } else{ // use default values tau=CNST(LM_INIT_MU); eps1=CNST(LM_STOP_THRESH); eps2=CNST(LM_STOP_THRESH); eps2_sq=CNST(LM_STOP_THRESH)*CNST(LM_STOP_THRESH); eps3=CNST(LM_STOP_THRESH); delta=CNST(LM_DIFF_DELTA); } if(!work){ worksz=LM_DIF_WORKSZ(m, n); //3*n+4*m + n*m + m*m; work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */ if(!work){ fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n")); exit(1); } freework=1; } /* set up work arrays */ e=work; hx=e + n; jacTe=hx + n; jac=jacTe + m; jacTjac=jac + nm; Dp=jacTjac + m*m; diag_jacTjac=Dp + m; pDp=diag_jacTjac + m; wrk=pDp + m; /* compute e=x - f(p) and its L2 norm */ (*func)(p, hx, m, n, adata); nfev=1; for(i=0, p_eL2=0.0; i<n; ++i){ e[i]=tmp=x[i]-hx[i]; p_eL2+=tmp*tmp; } init_p_eL2=p_eL2; nu=20; /* force computation of J */ for(k=0; k<itmax; ++k){ /* Note that p and e have been updated at a previous iteration */ if(p_eL2<=eps3){ /* error is small */ stop=6; break; } /* Compute the jacobian J at p, J^T J, J^T e, ||J^T e||_inf and ||p||^2. * The symmetry of J^T J is again exploited for speed */ if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */ if(using_ffdif){ /* use forward differences */ FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata); ++njap; nfev+=m; } else{ /* use central differences */ FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata); ++njap; nfev+=2*m; } nu=2; updjac=0; updp=0; newjac=1; } if(newjac){ /* jacobian has changed, recompute J^T J, J^t e, etc */ newjac=0; /* J^T J, J^T e */ if(nm<=__BLOCKSZ__SQ){ // this is a small problem /* This is the straightforward way to compute J^T J, J^T e. However, due to * its noncontinuous memory access pattern, it incures many cache misses when * applied to large minimization problems (i.e. problems involving a large * number of free variables and measurements), in which J is too large to * fit in the L1 cache. For such problems, a cache-efficient blocking scheme * is preferable. * * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this * performance problem. * * On the other hand, the straightforward algorithm is faster on small * problems since in this case it avoids the overheads of blocking. */ for(i=0; i<m; ++i){ for(j=i; j<m; ++j){ int lm; for(l=0, tmp=0.0; l<n; ++l){ lm=l*m; tmp+=jac[lm+i]*jac[lm+j]; } jacTjac[i*m+j]=jacTjac[j*m+i]=tmp; } /* J^T e */ for(l=0, tmp=0.0; l<n; ++l) tmp+=jac[l*m+i]*e[l]; jacTe[i]=tmp; } } else{ // this is a large problem /* Cache efficient computation of J^T J based on blocking */ TRANS_MAT_MAT_MULT(jac, jacTjac, n, m); /* cache efficient computation of J^T e */ for(i=0; i<m; ++i) jacTe[i]=0.0; for(i=0; i<n; ++i){ register LM_REAL *jacrow; for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l) jacTe[l]+=jacrow[l]*tmp; } } /* Compute ||J^T e||_inf and ||p||^2 */ for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){ if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp; diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */ p_L2+=p[i]*p[i]; } //p_L2=sqrt(p_L2); }#if 0if(!(k%100)){ printf("Current estimate: "); for(i=0; i<m; ++i) printf("%.9g ", p[i]); printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);}#endif /* check for convergence */ if((jacTe_inf <= eps1)){ Dp_L2=0.0; /* no increment for p in this case */ stop=1; break; } /* compute initial damping factor */ if(k==0){ for(i=0, tmp=LM_REAL_MIN; i<m; ++i) if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */ mu=tau*tmp; } /* determine increment using adaptive damping */ /* augment normal equations */ for(i=0; i<m; ++i) jacTjac[i*m+i]+=mu; /* solve augmented equations */#ifdef HAVE_LAPACK /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD. * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate; * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed */ issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m);#else /* use the LU included with levmar */ issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);#endif /* HAVE_LAPACK */ if(issolved){ /* compute p's new estimate and ||Dp||^2 */ for(i=0, Dp_L2=0.0; i<m; ++i){ pDp[i]=p[i] + (tmp=Dp[i]); Dp_L2+=tmp*tmp; } //Dp_L2=sqrt(Dp_L2); if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */ //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */ stop=2; break; } if(Dp_L2>=(p_L2+eps2)/(CNST(EPSILON)*CNST(EPSILON))){ /* almost singular */ //if(Dp_L2>=(p_L2+eps2)/CNST(EPSILON)){ /* almost singular */ stop=4; break; } (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */ for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */ tmp=x[i]-wrk[i]; pDp_eL2+=tmp*tmp; } dF=p_eL2-pDp_eL2; if(updp || dF>0){ /* update jac */ for(i=0; i<n; ++i){ for(l=0, tmp=0.0; l<m; ++l) tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */ tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */ for(j=0; j<m; ++j) jac[i*m+j]+=tmp*Dp[j]; } ++updjac; newjac=1; } for(i=0, dL=0.0; i<m; ++i) dL+=Dp[i]*(mu*Dp[i]+jacTe[i]); if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */ dF=(CNST(2.0)*dF/dL-CNST(1.0)); tmp=dF*dF*dF; tmp=CNST(1.0)-tmp*tmp*dF; mu=mu*( (tmp>=CNST(ONE_THIRD))? tmp : CNST(ONE_THIRD) ); nu=2; for(i=0 ; i<m; ++i) /* update p's estimate */ p[i]=pDp[i]; for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */ e[i]=x[i]-wrk[i]; hx[i]=wrk[i]; } p_eL2=pDp_eL2; updp=1; continue; } } /* if this point is reached, either the linear system could not be solved or * the error did not reduce; in any case, the increment must be rejected */ mu*=nu; nu2=nu<<1; // 2*nu; if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */ stop=5; break; } nu=nu2; for(i=0; i<m; ++i) /* restore diagonal J^T J entries */ jacTjac[i*m+i]=diag_jacTjac[i]; } if(k>=itmax) stop=3; for(i=0; i<m; ++i) /* restore diagonal J^T J entries */ jacTjac[i*m+i]=diag_jacTjac[i]; if(info){ info[0]=init_p_eL2; info[1]=p_eL2; info[2]=jacTe_inf; info[3]=Dp_L2; for(i=0, tmp=LM_REAL_MIN; i<m; ++i) if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i]; info[4]=mu/tmp; info[5]=(LM_REAL)k; info[6]=(LM_REAL)stop; info[7]=(LM_REAL)nfev; info[8]=(LM_REAL)njap; } /* covariance matrix */ if(covar){ LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n); } if(freework) free(work); if(wrk2) free(wrk2); return (stop!=4)? k : -1;}/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */#undef LEVMAR_DER#undef LEVMAR_DIF#undef FDIF_FORW_JAC_APPROX#undef FDIF_CENT_JAC_APPROX#undef LEVMAR_COVAR#undef TRANS_MAT_MAT_MULT#undef AX_EQ_B_LU#undef AX_EQ_B_CHOL#undef AX_EQ_B_QR#undef AX_EQ_B_QRLS#undef AX_EQ_B_SVD
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -