⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 input.txt

📁 pic 模拟程序!面向对象
💻 TXT
📖 第 1 页 / 共 3 页
字号:
IdiagFlag=0 (flag) Toggles particle current accumulation: 0=off, 1=on.Ihist_avg=1 (int) Number of timesteps for averaging current plots.Ihist_len=1024 (int) Length of the current history arrays.diagSpeciesName=Noname (string) species for distribution function accumulation.				If not present or set to "Noname", the diagnostic is off.nxbins=100  (int) Number of spatial bins along boundary segment for distribution				accumulation.nenergybins=0  (int) Number of energy bins for distribution accumulation.nthetabins=0 (int) Number of bins for angular distribution function.theta_min=0 (Scalar) Minimum angle for angular distribution function.theta_max=90 (Scalar) Maximum angle for angular distribution function.energy_min=0 (Scalar) [eV] Minimum energy for dist. funtion collector.energy_max=100 (Scalar) [eV] Minimum energy for dist. funtion collector.name  (string) A name for this boundary, will appear in graphs under XOOPIC.C=1   (scalar) DC value for time-dependent function.A=0   (scalar) AC value for time-dependent function.frequency=0 (scalar) [Hz] Frequency of AC variation for time-dependent function.phase=0  (scalar) [rad] Initial phase of AC variation for time-dependent function.tdelay=0 (scalar) [s] Delay time before start of envelope function.trise=0  (scalar) [s] Rise time of envelope for time-dependent function.tpulse=10000   (scalar) [s] Pulse width of envelope for time-dependent function.tfall=0 (scalar) [s] Pulse fall time of envelope for time-dependent function.a0=1    (scalar) Low value of envelope for time-dependent function.a1=1    (scalar) High value of envelope for time-dependent function.xtFlag=0 (flag) Selects space function: 0 = default t-envelope   > 0 = string-interpreted function of the form: 1 = f(t), 2 = f(x),   3 = f1(x)f2(t), 4 = f(x,t) using F below.F="0" (string)  A string which is interpreted at runtime to give the time-dependence 	        of this boundary. (see timefunc.txt and evaluator.txt)Dielectric-----------------------------------Generic Boundary parameters, only 1 Segment permitted.er=1  (scalar) Relative permittivity.QuseFlag=1  (flag) Determines whether to use the accumulated surface charge in the				field solve; i.e. 0 indicates that the charge drains off.  This flag 				is only applicable to the electrostatic model.reflection=0	 (scalar) Coefficient for particle reflection between 0 and 1.refMaxE=1e10 (scalar) [eV] Only reflect particles below this energy.transparency=0 (scalar) Coefficient for particle transmission between 0 and 1.      Do not place non-zero value on system edge!Secondary group (see below) can contain zero or more of these.Secondary2 group (see below) can contain zero or more of these.Secondary------------------------------------Particle-impact induced emission. Angle of emission is isotropic.secondary=0 (scalar) Secondary emission coefficient, can be > 1threshold=0.5 (scalar) [eV] Emission threshold: incident energy must exceed to emit.Eemit=2 (scalar) [eV] Maximum energy of emitted secondaries (uniformly distributed).secSpecies=NULL  (string) Name of the species to emit as secondaries;    must correspond to an existing species if secondary > 0.iSpecies=NULL (string) Incident species to generate secondaries.Secondary2-----------------------------------Secondary parameters.fReflected=0 (scalar) Fraction of emitted particles which are reflected primaries.fScattered=0 (scalar) Fraction of emitted particles which are scattered primaries.Eemit=2 (scalar) [eV] Most probable emission energy of true secondaries.energy_max0=0 (scalar) [eV] Impact energy at maximum yield.ks=1 (scalar) Surface roughness, 0<=ks<=2 (0 is roughest).DielectricRegion-----------------------------Dielectric parameters, only 1 Segment permitted.*note: for DielectricRegion, the points formed by (j1,k1) and (j2,k2)	indicate a rectangular region rather than a line segment.DielectricTriangle-----------------------------Dielectric parameters, only 1 Segment permitted.*note: for DielectricRegion, the points formed by (j1,k1) and (j2,k2)	indicate two vertices of a right triangle.  The third vertex	is determined by the normal:  if normal > 0, the third vertex	of the triangle is above the line.  Otherwise, it's below the	line.CurrentRegion-----------------------------------Generic Boundary parameters, only 1 Segment permitted.Current=1 (scalar) Magnitude in Amps of the TOTAL current in the region.direction=3 (int)  direction of current 1,2,3	currentFile (String) 	file containing current distribution, total current is	  								Current.analyticF (String)		Analytic function of x1,x2 describing the current distribution, total current is Current (see evaluator.txt)PlasmaSource-----------------------------------units1=MKS	(string) [MKS or EV] units for ALL the velocities for species 1v1drift1=0   (scalar) [m/s or eV] Drift velocity in x1.v2drift1=0   (scalar) [m/s or eV] Drift velocity in x2.v3drift1=0  (scalar) [m/s or eV] Drift velocity in x3.temperature1=0  (scalar) [m/s or eV] Isotropic temperature.  (see Load for definition)v1thermal1=0   (scalar) [m/s or eV] Thermal velocity in x1.  (see Load for definition)v2thermal1=0   (scalar) [m/s or eV] Thermal velocity in x2.  (see Load for definition)v3thermal1=0  (scalar) [m/s or eV] Thermal velocity in x3.  (see Load for definition) Ucutoff1=0 (scalar) [m/s oreV] isotropic upper cutoff for temperature.v1Ucutoff1=0 (scalar) [m/s or eV] upper cutoff velocity in x1.v2Ucutoff1=0 (scalar) [m/s or eV] upper cutoff velocity in x2.v3Ucutoff1=0 (scalar) [m/s or eV] upper cutoff velocity in x3.Lcutoff1=0 (scalar) [m/s oreV] isotropic lower cutoff for temperature.v1Lcutoff1=0 (scalar) [m/s or eV] lower cutoff velocity in x1.v2Lcutoff1=0 (scalar) [m/s or eV] lower cutoff velocity in x2.v3Lcutoff1=0 (scalar) [m/s or eV] lower cutoff velocity in x3.speciesName1=NULL  (scalar) Refers to the Species with the same speciesName.units2=MKS	(string) [MKS or EV] units for ALL the velocities for species 2v1drift2=0   (scalar) [m/s or eV] Drift velocity in x1.v2drift2=0   (scalar) [m/s or eV] Drift velocity in x2.v3drift2=0  (scalar) [m/s or eV] Drift velocity in x3.temperature2=0  (scalar) [m/s or eV] Isotropic temperature.  (see Load for definition)v1thermal2=0   (scalar) [m/s or eV] Thermal velocity in x1.  (see Load for definition)v2thermal2=0   (scalar) [m/s or eV] Thermal velocity in x2.  (see Load for definition)v3thermal2=0  (scalar) [m/s or eV] Thermal velocity in x3.  (see Load for definition)Ucutoff2=0 (scalar) [m/s oreV] isotropic upper cutoff for temperature.v1Ucutoff2=0 (scalar) [m/s or eV] upper cutoff velocity in x1.v2Ucutoff2=0 (scalar) [m/s or eV] upper cutoff velocity in x2.v3Ucutoff2=0 (scalar) [m/s or eV] upper cutoff velocity in x3.Lcutoff2=0 (scalar) [m/s oreV] isotropic lower cutoff for temperature.v1Lcutoff2=0 (scalar) [m/s or eV] lower cutoff velocity in x1.v2Lcutoff2=0 (scalar) [m/s or eV] lower cutoff velocity in x2.v3Lcutoff2=0 (scalar) [m/s or eV] lower cutoff velocity in x3.speciesName2=NULL  (scalar) Refers to the Species with the same speciesName.j1,k1,j2,k2: two corner points to define the rectangle.sourceRate=0 (scalar) [#/m^3/s]	rate of plasma generation m^-3 s^-1np2c=1e6     (scalar) ratio of physical to computer particlesanalyticF="0.0" (string) Spatial distribution of the generated			particles.  Understands the variables			x1, x2, and t (see evaluator.txt)A plasma source is a rectangular region in which a plasma isgenerated at a certain rate.  THe default profile is uniform ifanalyticF is not given. It may be drawn in a strange fashion,don't worry about that.Conductor------------------------------------Dielectric parameters, multiple Segments permitted.Polarizer------------------------------------Conductor parameters, and:transmissivity=0  (scalar) Fraction of particles which pass through the polarizerPhi=90  (degrees) Polarization angle with respect to the simulation plane.		  This parameter can be a function of X as well, with X being		  the fraction along the length of the polarizer.  X = 0 is		  defined as the lower- or left-most point of the polarizer,		  and X = 1 is the other end.		  For example: Phi = 90 * X  gives a ramp of Phi from 0 to X.	   CylindricalAxis------------------------------Generic Boundary parameters.Generic Emitter Parameters-----------------------Dielectric  Parameters, Only 1 Segment permitted.units=MKS	(string) [MKS or EV] units for ALL the velocitiesv1drift=0   (scalar) [m/s or eV] Drift velocity in x1.v2drift=0   (scalar) [m/s or eV] Drift velocity in x2.v3drift=0  (scalar) [m/s or eV] Drift velocity in x3.temperature=0  (scalar) [m/s or eV] Isotropic temperature.  (see Load for definition)v1thermal=0   (scalar) [m/s or eV] Thermal velocity in x1.  (see Load for definition)v2thermal=0   (scalar) [m/s or eV] Thermal velocity in x2.  (see Load for definition)v3thermal=0  (scalar) [m/s or eV] Thermal velocity in x3.  (see Load for definition)Lcutoff=0 (scalar) [m/s oreV] isotropic lower cutoff for temperature.v1Lcutoff=0 (scalar) [m/s or eV] lower cutoff velocity in x1.v2Lcutoff=0 (scalar) [m/s or eV] lower cutoff velocity in x2.v3Lcutoff=0 (scalar) [m/s or eV] lower cutoff velocity in x3.Ucutoff=0 (scalar) [m/s oreV] isotropic upper cutoff for temperature.v1Ucutoff=0 (scalar) [m/s or eV] upper cutoff velocity in x1.v2Ucutoff=0 (scalar) [m/s or eV] upper cutoff velocity in x2.v3Ucutoff=0 (scalar) [m/s or eV] upper cutoff velocity in x3.np2c=1E6 (scalar) Number of physical particles to computer particles.speciesName=NULL  (scalar) Refers to the Species with the same speciesName.FowlerNordheimEmitter---------------------------------This is a field emitter, which obeys the Fowler-Nordheim model.The emitted current density, J_FN [A/m^2], is a function of theperpendicular electric field at the surface, E [V/m], and anumber of special parameters:  J_FN = ( A_FN * (beta_FN * E)^2 / Phi_w_FN ) *         exp[ -(B_FN * v(y) * Phi_w_FN^1.5) / (beta_FN * E) ]  y(E) = C_y_FN * E^0.5 / Phi_w_FN  v(y) = 1 - C_v_FN * y^2Generic Emitter parameters, only 1 Segment permitted.A_FN=1.5414e-06 (scalar) [A-eV/V^2]  See equation above for meaning.B_FN=6.8308e+09 (scalar) [V/m/eV^1.5] See equation above for meaning.beta_FN=1. (scalar) [dimensionless]  See equation above for meaning.C_v_FN=0. (scalar) [dimensionless] See equation above for meaning.C_y_FN=3.79e-05 (scalar) [eV/(V/m)^0.5] See equation above for meaning.Phi_w_FN=4. (scalar) [eV]  The work function for electrons in the surface.nIntervals=0 (int) The number of intervals to be used for emitting particles.                   In the default case, nIntervals will be reset to the # of                   cells along the emitting boundary (with a minimum of 2),                   which  is the most reasonable thing to do.FieldEmitter2----------------------------------Describes a primary cell space charge limited field emitter using Gauss's LawGeneric Emitter parameters, only 1 segment permittedthreshold = 0 (Scalar) [V/m] The threshold field for emissionBeamEmitter----------------------------------Generic Emitter parameters, only 1 Segment permitted.I=1   (scalar) [A] Emission current.thetadot=0  (scalar) [rad/s] Angular velocity of beam.nIntervals=0 (int) Number of intervals for inversion of spatial dependence of	J(x) as specified by F. Zero means use the number of cells.VarWeightBeamEmitter-------------------------BeamEmitter parameters, only 1 Segment permitted.nEmit=0 (int) Number of particles per timestep to emit; if nEmit=0 then the number is computed using np2c.ExitPort-------------------------------------Generic Boundary parameters, only 1 Segment permitted.R=376.99 (scalar) [ohms] Resistive component of surface impedance.L=0   (scalar) [H] Inductive component of surface impedance.Cap=0   (scalar) [F] Capacitive component of surface impedance.Rin=376.99  (scalar) [ohms] Resistive component of surface impedance for incoming				wave.Lin=0   (scalar) [H] Inductive component of surface impedance for incoming			wave.Capin=0   (scalar) [F] Capacitive component of surface impedance for incoming			wave.PortTE---------------------------------------Generic Boundary parameters,only 1 Segment permitted.PortTM---------------------------------------Generic Boundary parameters, only 1 Segment permitted.PortTEM_MW------------------------------------Generic boundary parameters, only 1 Segment permitted.Notes:  At present, this boundary is ONLY for use with moving window code,and ONLY for use on the right-hand-wall of a cartesian (xy) system.Wave is polarized in the x2 (y) direction.pwFrequency (scalar) [radians/s] Frequency of the input plane wave.        pwPhase     (scalar) [radians]  phase of argument to input plane wavepwWavenumber (scalar) [1/m] wave number (k) of input wave (needed because                            a plasma may be present)pwAmplitude (scalar)  [V/m] Amplitude of E field to be input.pwDelay     (scalar)  [seconds] Time before wave begins to emit (no ramping yet!)n0          (scalar)  [#/m^3] Plasma density wave is propagating in.                        (redundant with k:  make SURE these two are consistent                         with each other.)AbsorbWave-----------------------------------[currently nonfunctional]Generic Boundary parameters, only 1 Segment permitted.wavePhase=1 (scalar) Normalized phase velocity of wave, vphase/c.LaunchWave-----------------------------------[currently nonfunctional]Generic Boundary parameters, only 1 Segment permitted.wavePhase=1 (scalar) Normalized phase velocity of wave, vphase/c.riseTime=0  (scalar) [s] Rise time of incoming TEM wave.amplitude=1 (scalar) [V/m] Amplitude of incoming TEM wave.pulseLength=1  (scalar) [s] Length of wave pulse.frequency=0 (scalar) [Hz] Sinusoidal modulation of waveform.Gap------------------------------------------Generic Boundary parameters, only 1 Segment permitted.*note: uses timefunction (Generic Boundary parameters) to set time-dependent 	field (V/m) uniformly in space across the gap.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -