⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nomcc50fspulse.inp

📁 pic 模拟程序!面向对象
💻 INP
字号:
loasisHe.inp{Here we make an initial attempt to model some aspects ofthe laser plasma experiments in the l'OASIS laboratory ofWim Leemans et al. at LBNL.Pulse with transverse half Sine profile and y polarization is launched fromthe left boundary. Cartesian geometry, no plasma initially, background of neutral H gas.This is derived from loasis2.inp -- here we replace H with He andfurther increase the laser intenstiy by an order of magnitude.}Variables{// General numerical parameters  PI = 3.14159// **********************************************************************// General physical parameters// **********************************************************************  electronMass = 9.1094e-31   electronCharge = -1.6022e-19  permit = 8.8542e-12   speedLight = 2.9979e8  speedLight2 = speedLight*speedLight   electronCharge2 = electronCharge*electronCharge   qOverM = electronCharge/electronMass  ionCharge = -electronCharge  unitMassMKS = electronMass / 5.48579903e-04  hydrogenMassNum = 1.00797  hydrogenMass = unitMassMKS * hydrogenMassNum  HeMassNum = 4.0026  HeMass = unitMassMKS * HeMassNum// **********************************************************************// Plasma parameters// **********************************************************************//   Here, we have zero initial plasma density.  elecPlasmaDensity =  0.0   elecPlasmaFreq = sqrt(electronCharge*qOverM*elecPlasmaDensity/permit) // **********************************************************************// Laser pulse parameters - z polarization// **********************************************************************//   We are modeling a laser pulse with wavelength of 0.8 micron and//   FHWM pulse length of 50 fs to 200 fs, and a peak intensity of//   10^16 to 10^18 W/cm^2////   We are using a half sine function for the longitudinal shape of//   the pulse and Gaussians for the transverse directions with the//   same standard deviations sigma_r, same as waistSize below. //   The energy of the pulse is//   fixed at 20.5 mJ. In terms of the energy of the pulse energyOfPulse,//   the FHWM pulse length in [fs] pulseLengthFWHM, and the transverse //   width sigma_r, the peak laser intensity is given by: ////   Ipeak = (2*energyOfPulse)/(1.5*pulseLengthFWHM*PI*waistSize^2)//  energyOfPulse = 20.5e-3      // [J]  pulseLengthFWHM = 50.e-15    // [s]        waistSize = 6.0e-06          // [m]   laserWavelength = 0.8e-06  laserFrequency = 2.*PI*speedLight/laserWavelength  peakElectricField = sqrt(8.*energyOfPulse/(1.5*permit*speedLight*pulseLengthFWHM*PI*waistSize*waistSize))// **********************************************************************// Grid parameters// **********************************************************************// We must resolve the laser wavelength  Nx = 512   Ny = 256   numGridsPerWavelength = 16  dx = laserWavelength / numGridsPerWavelength  gridSizeRatio = 16  dy = dx * gridSizeRatio  Lx = Nx * dx  Ly = Ny * dy  d = 1. / sqrt( 1./(dx*dx) + 1./(dy*dy) )  timeStep = 0.99 * d / speedLight// **********************************************************************// More laser parameters:// **********************************************************************// We model the laser pulse envelope as a Gaussian (nPulseShape=1).// or a half sine shape (nPulseShape=2)  nPulseShape = 2  pulseLength  = 1.5*pulseLengthFWHM * speedLight// Here we specify Rayleigh length, etc.// These parameters are for a pulse with y-polarization.  angFreq = laserFrequency  angFreq2 = angFreq * angFreq  waveVector = sqrt( (angFreq2-elecPlasmaFreq*elecPlasmaFreq) / speedLight2 )  rayleighLength = waistSize * waistSize * waveVector / 2.  waistLocation = Lx + rayleighLength// **********************************************************************// Define gas density, pressure and other MCC parameters// **********************************************************************  gasTempEV       = 1.0e-06  // make gas cold (cannot set temperature to zero)  gasDensityMKS   = 2.e25    // [1/m^3]  gasPressureTorr = 1.20e-21 * gasDensityMKS * gasTempEV  numFlatCells = 4  numRampCells = 4  numZeroCells = Nx - numFlatCells - numRampCells  zeroEnd = (numZeroCells + .5) * dx  rampEnd = (numZeroCells + numRampCells + .5) * dx// we need to turn off the gas jet after two Rayleigh lengths  NGDSwitchOffTime = (8. * rayleighLength + Lx) / speedLight// This is the desired delay time before the moving window algorithm activates.  movingWindowDelay = (Nx-15) * dx / speedLight}Region{Grid{  J = Nx   x1s = 0.0  x1f = Lx   n1 = 1.0   K = Ny   x2s = 0.0  x2f = Ly   n2 = 1.0  Geometry = 1}Control{  dt = timeStep  initPoissonSolve=0// Turn on the moving window algorithm.  movingWindow = 1  shiftDelayTime = movingWindowDelay// Turn off the gas jet after some time///  gasOffTime = NGDSwitchOffTime}Species{  name = electrons  m = electronMass   q = electronCharge   particleLimit = 2.5e+05 // prevents out-of-control growth in # of ptcls}Species{  name = HePlus  m = HeMass  q = ionCharge  particleLimit = 1.0e+05 // prevents out-of-control growth in # of ptcls}Species{  name = HePlusPlus  m = HeMass  q = 2*ionCharge  particleLimit = 1.0e+05 // prevents out-of-control growth in # of ptcls}Diagnostic{        j1 = 0        j2 = Nx        k1 = 0        k2 = Ny        VarName = WaveDirDiagnostic        polarizationEB = EzBy        psd1dFlag = 1 // set to 1 to calculate the 1d power spectral density        windowName = Blackman        title = Wave Energy        x1_Label = x        x2_Label = y        x3_Label = Wave Energy}PortGauss{  j1 = 0   k1 = 0   j2 = 0   k2 = Ny   normal = 1  A = 0  C = 1.0 // Wave (0)  pulShp_p0 = nPulseShape  tdelay_p0 = 0.0   pulLeng_p0 = pulseLength  chirp_p0 = 0.0  spotSize_p0 = waistSize  waveLeng_p0 = laserWavelength  focus_p0 = waistLocation  amp_p0 = 0.0// Wave (1)  pulShp_p1 = nPulseShape  tdelay_p1 = 0.0  pulLeng_p1 = pulseLength  chirp_p1 = 0.0  spotSize_p1 = waistSize  waveLeng_p1 = laserWavelength  focus_p1 = waistLocation  amp_p1 = peakElectricField  EFFlag = 0   name = PortGauss}Conductor{  j1 = 0  k1 = Ny   j2 = Nx   k2 = Ny   normal = -1  EFFlag = 0   name = ExitPort  C = 0  A = 0}Conductor{  j1 = 0  k1 = 0   j2 = Nx   k2 = 0   normal = 1  EFFlag = 0   name = ExitPort  C = 0  A = 0}Conductor{  j1 = Nx  k1 = 0  j2 = Nx  k2 = Ny  normal = -1  EFFlag = 0   name = ExitPort  C = 0  A = 0}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -