📄 loasis4.inp
字号:
loasis4.inp{Here we make an initial attempt to model the effects of small-scalevariations in the neutral gas density, and how it might be impactingthe laser plasma experiments in the l'OASIS laboratory of Wim Leemanset al. at LBNL.Pulse with transverse Gaussian profile and y polarization is launched fromthe left boundary. Cartesian geometry, no plasma initially, background of neutral H gas.This is derived from loasis2.inp -- here we turn off the moving windowand run the laser pulse through a saw-shaped density profile.}Variables{// General numerical parameters PI = 3.14159// **********************************************************************// General physical parameters// ********************************************************************** electronMass = 9.1094e-31 electronCharge = -1.6022e-19 permit = 8.8542e-12 speedLight = 2.9979e8 speedLight2 = speedLight*speedLight electronCharge2 = electronCharge*electronCharge qOverM = electronCharge/electronMass ionCharge = -electronCharge unitMassMKS = electronMass / 5.48579903e-04 hydrogenMassNum = 1.00797 hydrogenMass = unitMassMKS * hydrogenMassNum// **********************************************************************// Plasma parameters// **********************************************************************// Here, we have zero initial plasma density. elecPlasmaDensity = 0.0 elecPlasmaFreq = sqrt(electronCharge*qOverM*elecPlasmaDensity/permit) // **********************************************************************// Laser pulse parameters - y polarization// **********************************************************************// We are modeling a laser pulse with wavelength of 0.8 micron and// FHWM pulse length of 50 fs to 200 fs, and a peak intensity of// 10^14 to 10^15 W/cm^2// peakLaserIntensity = 1e+16 // W/cm^2 pulseLengthFWHM = 50.e-15 laserWavelength = 0.8e-06 laserFrequency = 2.*PI*speedLight/laserWavelength // We must convert the intensity to MKS units peakLaserIntensityMKS = peakLaserIntensity * 1.0e+04 peakElectricField = sqrt(2.*peakLaserIntensityMKS/speedLight/permit)// **********************************************************************// Grid parameters// **********************************************************************// We must resolve the laser wavelength Nx = 512 Ny = 256 numGridsPerWavelength = 16 dx = laserWavelength / numGridsPerWavelength gridSizeRatio = 10 dy = dx * gridSizeRatio Lx = Nx * dx Ly = Ny * dy d = 1. / sqrt( 1./(dx*dx) + 1./(dy*dy) ) timeStep = 0.7 * d / speedLight// **********************************************************************// More laser parameters:// **********************************************************************// We model the laser pulse envelope as a Gaussian (nPulseShape=1). nPulseShape = 1 pulseLength = pulseLengthFWHM * speedLight// Here we specify the waist size, Rayleigh length, etc.// These parameters are for a pulse with y-polarization. waistSize = 6.0e-06 angFreq = laserFrequency angFreq2 = angFreq * angFreq waveVector = sqrt( (angFreq2-elecPlasmaFreq*elecPlasmaFreq) / speedLight2 ) rayleighLength = waistSize * waistSize * waveVector / 2. waistLocation = 3.0 * rayleighLength// **********************************************************************// Define gas density, pressure and other MCC parameters// ********************************************************************** gasTempEV = 1.0e-06 // make gas cold (cannot set temperature to zero) gasDensityMKS = 2.e25 gasPressureTorr = 1.20e-21 * gasDensityMKS * gasTempEV nRamp1 = Nx / 2 nRamp2 = Nx / 2 offSet = 0.5 * dx xRamp1 = offSet + nRamp1 * dx xRamp2 = xRamp1 + nRamp2 * dx}Region{Grid{ J = Nx x1s = 0.0 x1f = Lx n1 = 1.0 K = Ny x2s = 0.0 x2f = Ly n2 = 1.0 Geometry = 1}Control{ dt = timeStep}Species{ name = electrons m = electronMass q = electronCharge particleLimit = 2.5e+05 // prevents out-of-control growth in # of ptcls}Species{ name = ions m = hydrogenMass q = ionCharge// -- you can't subcycle the ions, because they are moved by the high-frequency// oscillations of the laser pulse// subcycle = 20 particleLimit = 1.0e+05 // prevents out-of-control growth in # of ptcls}// Specify the Monte Carlo collision parameters for background gasMCC{ gas = H pressure = gasPressureTorr temperature = gasTempEV analyticF = gasDensityMKS * ( ramp(x1/xRamp1)*step(xRamp1-x1) + (1.-ramp((x1-xRamp1)/(xRamp2-xRamp1)))*step(xRamp2-x1)*step(x1-xRamp1) ) // to discard the ngd data from the dump file set // discardDumpFileNGDDataFlag to a nonzero int value // discardDumpFileNGDDataFlag = 1 eSpecies = electrons iSpecies = ions // turn OFF electron/ion collisions, including impact ionization collisionFlag = 0 // turn on tunneling ionization in linearly polarized alternating field tunnelingIonizationFlag = 1 // specify static field / circular polarization ETIPolarizationFlag = 1 // fix the number of macro particles to be created in each cell TI_numMacroParticlesPerCell = 8}Diagnostic{ j1 = 0 j2 = Nx k1 = 0 k2 = Ny VarName = WaveDirDiagnostic polarizationEB = EzBy psd1dFlag = 1 // calculate the 1d power spectral density windowName = Blackman title = Wave Energy x1_Label = x x2_Label = y x3_Label = Wave Energy}PortGauss{ j1 = 0 k1 = 0 j2 = 0 k2 = Ny normal = 1 A = 0 C = 1.0 // Wave (0) pulShp_p0 = nPulseShape tdelay_p0 = 0.0 pulLeng_p0 = pulseLength chirp_p0 = 0.0 spotSize_p0 = waistSize waveLeng_p0 = laserWavelength focus_p0 = waistLocation amp_p0 = 0.0// Wave (1) pulShp_p1 = nPulseShape tdelay_p1 = 0.0 pulLeng_p1 = pulseLength chirp_p1 = 0.0 spotSize_p1 = waistSize waveLeng_p1 = laserWavelength focus_p1 = waistLocation amp_p1 = peakElectricField EFFlag = 0 name = PortGauss}ExitPort{ j1 = 0 k1 = Ny j2 = Nx k2 = Ny normal = -1 EFFlag = 0 name = ExitPort C = 0 A = 0}ExitPort{ j1 = 0 k1 = 0 j2 = Nx k2 = 0 normal = 1 EFFlag = 0 name = ExitPort C = 0 A = 0}Conductor{ j1 = Nx k1 = 0 j2 = Nx k2 = Ny normal = -1 EFFlag = 0 name = ExitPort C = 0 A = 0}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -