📄 ti_h_benchy_vac.inp
字号:
TI_Hydrogen_Benchmark.inp{Here, we will try to duplicate some of the numerical results on laserionization from Leemans et al., (1992) Phys. Plasmas for Hydrogen.A laser pulse with transverse Gaussian profile and y polarization is launched from the left boundary. At some point, we need to changeto z-polarization.Cartesian geometry, with a background neutral Hydrogen gas.The laser pulse is defined by the variables: - rsm_p0 = spot size at beam waist (i.e. location of focus) - ryl_p0 = Rayleigh length. - omeg_p0 = angular frequency. - zf_p0 = position of focus (i.e. beam waist) - Aw_p0 = wave amplitude.}Variables{// General parameters electronMass = 9.1094e-31 electronCharge = -1.6022e-19 permit = 8.8542e-12 speedLight = 2.9979e8 speedLight2 = speedLight*speedLight electronCharge2 = electronCharge*electronCharge qOverm = electronCharge/electronMass ionCharge = -electronCharge unitMassMKS = electronMass / 5.48579903e-04 hydrogenMassNum = 1.00797 hydrogenMass = unitMassMKS * hydrogenMassNum PI = 3.14159// Laser pulse variables peakLaserIntensity = 1.0e+14 // W/cm^2 intensityFactor = 4. // because half of the wave goes left and is lost peakLaserIntensityMKS = peakLaserIntensity * 1.0e+04 * intensityFactor peakElectricField = sqrt(2.*peakLaserIntensityMKS/speedLight/permit) laserWavelength = 10.6e-06 laserFrequency = 2*PI*speedLight/laserWavelength // normalized length scale = c/omega_0 xNormalized = laserWavelength / (2.*PI) laserRiseTime = 750/laserFrequency laserFallTime = 1250/laserFrequency// Grid variables dx = laserWavelength / 10 dy = dx Nx = 384 Ny = 256 Lx = Nx * dx Ly = Ny * dy d = 1. / sqrt( 1./(dx*dx) + 1./(dy*dy) ) timeStep = 0.7 * d / speedLight// Plasma parameters elecPlasmaDensity = 0.0 elecPlasmaFreq = sqrt(electronCharge*qOverm*elecPlasmaDensity/permit)// **********************************************************************// More laser parameters:// **********************************************************************// We model the laser pulse envelope as a trapezoidal (nPulseShape=0). nPulseShape = 0 pulseLengthFWHM = 7500.0/laserFrequency pulseLength = pulseLengthFWHM * speedLight //// laser pulse parameters - y polarization// ///// focus_p0 = 0.5 * Lx // <- this is the old paramter waist_p0 = 10. * xNormalized angFreq_p0 = laserFrequency angFreq2_p0 = angFreq_p0*angFreq_p0 waveVector_p0 = sqrt((angFreq2_p0-elecPlasmaFreq*elecPlasmaFreq)/speedLight2) rayleighLength_p0 = waist_p0*waist_p0*waveVector_p0/2. waistLocation_p0 = 0.5 * Lx//// laser pulse parameters - z polarization// ///// focus_p0 = 0.5 * Lx // <- this is the old paramter waist_p1 = 10. * xNormalized angFreq_p1 = laserFrequency angFreq2_p1 = angFreq_p0*angFreq_p0 waveVector_p1 = sqrt((angFreq2_p0-elecPlasmaFreq*elecPlasmaFreq)/speedLight2) rayleighLength_p1 = waist_p0*waist_p0*waveVector_p0/2. waistLocation_p1 = 0.5 * Lx// Define gas density, pressure and other MCC parameters gasTempEV = 1.0e-06 // make gas cold cannot set temperature to zero) rootCritDensity = laserFrequency / ( 2*PI*9000) criticalDensity = rootCritDensity * rootCritDensity * 1.e+06 gasDensityMKS = 0.1 * criticalDensity gasPressureTorr = 1.20e-21 * gasDensityMKS * gasTempEV numZeroCells = 2 numRampCells = 1 numFlatCells = Nx - numRampCells - numZeroCells zeroEnd = numZeroCells * dx rampEnd = zeroEnd + numRampCells * dx}Region{Grid{ J = Nx x1s = 0.0 x1f = Lx n1 = 1.0 K = Ny x2s = 0.0 x2f = Ly n2 = 1.0 Geometry = 1}Control{ dt = timeStep}Species{ name = electrons m = electronMass q = electronCharge // prevents out-of-control growth in # of ptcls particleLimit = 8.0e+04}Species{ name = ions m = 1.67e-27 q = 1.6e-19 subcycle = 20// prevents out-of-control growth in # of ptcls particleLimit = 8.0e+04}PortGauss{ j1 = 0 k1 = 0 j2 = 0 k2 = Ny normal = 1//// wave (0) - y polarization////// old version//// A = 0.0// C = 1.0 // a1 = 1.0 // a0 = 0.0// tdelay = 0.// trise = laserRiseTime// tpulse = 0.// tfall = laserFallTime//// rsm_p0 = waist_p0// omeg_p0 = laserFrequency// ryl_p0 = rayleighLength_p0// zf_p0 = focus_p0// Aw_p0 = peakElectricField// pulShp_p0 = nPulseShape tdelay_p0 = 0.0 pulLeng_p0 = pulseLength chirp_p0 = 0 spotSize_p0 = waist_p0 waveLeng_p0 = laserWavelength focus_p0 = waistLocation_p0 amp_p0 = peakElectricField //amp_p0 = 0.0 // no polarization along y//// wave (1) - z polarization// //// old version// // A = 0// C = 1.0 // a1_p1 = 1.0 // a0_p1 = 0.0//// tdelay_p1 = 1.2e13 // trise_p1 = 1.66e-14 // tpulse_p1 = 3.3e-14 // tfall_p1 = 1.66e-14 //// rsm_p1 = waist_p0// omeg_p1 = angFreq_p0// ryl_p1 = rayleighLength_p0// zf_p1 = focus_p0// Aw_p1 = 0.0//// EFFlag = 0 // name = PortGauss pulShp_p1 = nPulseShape tdelay_p1 = 0.0 pulLeng_p1 = pulseLength chirp_p1 = 0 spotSize_p1 = waist_p0 waveLeng_p1 = laserWavelength focus_p1 = waistLocation_p0 //amp_p1 = peakElectricField amp_p1 = 0.0 // no polarization along Ez EFFlag = 0 name = PortGauss}ExitPort{ j1 = 0 k1 = Ny j2 = Nx k2 = Ny EFFlag = 0 normal = -1 name = ExitPort C = 0 A = 0}ExitPort{ j1 = 0 k1 = 0 j2 = Nx k2 = 0 EFFlag = 0 normal = 1 name = ExitPort C = 0 A = 0}ExitPort{ j1 = Nx k1 = 0 j2 = Nx k2 = Ny EFFlag = 0 normal = -1 name = ExitPort C = 0 A = 0}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -